Current Environmental Health Reports

, Volume 3, Issue 4, pp 459–467 | Cite as

Exposure Potential and Health Impacts of Indium and Gallium, Metals Critical to Emerging Electronics and Energy Technologies

  • Sarah Jane O. WhiteEmail author
  • James P. Shine
Metals and Health (A Barchowsky, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Metals and Health


The rapid growth of new electronics and energy technologies requires the use of rare elements of the periodic table. For many of these elements, little is known about their environmental behavior or human health impacts. This is true for indium and gallium, two technology critical elements. Increased environmental concentrations of both indium and gallium create the potential for increased environmental exposure, though little is known about the extent of this exposure. Evidence is mounting that indium and gallium can have substantial toxicity, including in occupational settings where indium lung disease has been recognized as a potentially fatal disease caused by the inhalation of indium particles. This paper aims to review the basic chemistry, changing environmental concentrations, potential for human exposure, and known health effects of indium and gallium.


Trace metals E-waste Occupational exposure Semiconductor Indium lung disease Environment 



This work was funded by the NSF SEES Fellowship GEO-1215894.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    US Geological Survey, 2014, Indium Statistics, T. D. Kelly and G. R. Matos, comps., in Historical statistics for mineral and material commodities in the United States (Indium; 2014 version): U.S. Geological Survey Data Series 140, accessed 2016 at Available online at
  2. 2.
    US Geological Survey, 2014, Indium Statistics, T. D. Kelly and G. R. Matos, comps., in Historical statistics for mineral and material commodities in the United States (Gallium; 2014 version): U.S. Geological Survey Data Series 140, accessed 2016 at Available online at
  3. 3.
    Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman AL, Brune M, et al. E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect. 2016;124(5):550–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Wood SA, Samson IM. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev. 2006;28(1):57–102.CrossRefGoogle Scholar
  5. 5.
    Martell AE, Smith RM. Critical stability constants. New York: Plenum Press; 1977.Google Scholar
  6. 6.•
    White SJO, Hemond HF. The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Crit Rev Environ Sci Technol. 2012;42:155–86. This review provides detailed information about the natural and human-induced cycling of indium in the environment, along with information about indium’s chemistry and toxicity.CrossRefGoogle Scholar
  7. 7.
    Jorgenson JD, George MW. Mineral Commodity Profile: Indium; U.S. Geological Survey: Reston, VA, 2005; Open-File Report 2004–1300.Google Scholar
  8. 8.
    Hines CJ, Roberts JL, Andrews RN, Jackson MV, Deddens JA. Use of and occupational exposure to indium in the United States. J Occup Environ Hyg. 2013;10(12):723–33.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lahiri S, Maiti M, Ghosh K. Production and separation of 111In: an important radionuclide in life sciences: a mini review. J Radioanal Nucl. 2013;297(3):309–18.CrossRefGoogle Scholar
  10. 10.
    Rudnick RL, Gao S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland HD, Turekian KK, Eds. Elsevier/Pergamon: Amsterdam; Boston, 2004. pp 1–64.Google Scholar
  11. 11.
    Wedepohl KH. The composition of the continental-crust. Geochim Cosmochim Acta. 1995;59(7):1217–32.CrossRefGoogle Scholar
  12. 12.
    Maenhaut W, Zoller WH. Determination of chemical composition of South Pole aerosol by instrumental neutron-activation analysis. J Radioanal Chem. 1977;37(2):637–50.CrossRefGoogle Scholar
  13. 13.
    Smith IC, Carson BL, Hoffmeister F. (Eds). Trace metals in the environment: Volume 5 - Indium; Ann Arbor Science Publishers: Ann Arbor: Mich; 1978. pp. 552.Google Scholar
  14. 14.
    White SJO, Keach C, Hemond HF. Atmospheric deposition of indium in the northeastern United States: flux and historical trends. Environ Sci Technol. 2015;49(21):12705–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen HW. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bull Environ Contam Toxicol. 2006;77(2):289–96.CrossRefPubMedGoogle Scholar
  16. 16.
    White SJO, Hussain FA, Hemond HF, Sacco SA, Shine JP, Runkel RL, Walton-Day K, Kimball B. The precipitation of indium at elevated pH in a stream influenced by acid-mine drainage. Science of the Total Environment 2016. doi:  10.1016/j.scitotenv.2016.08.136.
  17. 17.•
    Cummings KJ, Virji MA, Park JY, Stanton ML, Edwards NT, Trapnell BC, et al. Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers. Am J Ind Med. 2016;59(7):522–31. This is a follow up study to other important studies by Cummings et al. that clearly demonstrates a link between exposure to indium particles, blood plasma concentrations, and health outcomes.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen H. Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull Environ Contam Toxicol. 2007;78(2):113–7.CrossRefGoogle Scholar
  19. 19.
    Ohkouchi S, Nakamura Y, Nakamura H, Asakawa K. Indium nano-dot arrays formed by field-induced deposition with a Nano-Jet Probe for site-controlled InAs/GaAs quantum dots. Thin Solid Films. 2004;464–465:233–6.CrossRefGoogle Scholar
  20. 20.
    Sujatha Devi P, Chatterjee M, Ganguli D. Indium tin oxide nano-particles through an emulsion technique. Mater Lett. 2002;55(4):205–10.CrossRefGoogle Scholar
  21. 21.
    Chen H. Characteristics and risk assessment of trace metals in airborne particulates from a semiconductor industrial area of northern Taiwan. Fresenius Environ Bull. 2007;16(10):1288–94.Google Scholar
  22. 22.
    Chen H, Chen W, Chang C, Chuang Y, Lin Y. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park. Atmos Res. 2016;174:97–105.CrossRefGoogle Scholar
  23. 23.
    National Institute of Occupational Safety and Health. NIOSH recommendations for occupational safety and health: compendium of policy documents and statements (DHHS NIOSH Publication no. 92–100); U.S. Dept. of Health and Human Services: Cincinnati, Ohio, 1992; pp 208.Google Scholar
  24. 24.
    American Conference of Governmental Industrial Hygienists. 2007 TLVs and BEIs : based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices; American Conference of Governmental Industrial Hygienists: Cincinnati, Ohio; 2007. pp. 238.Google Scholar
  25. 25.
    Ministry of Health, Labor, and Welfare (MHLW). Technical guidelines for preventing health impairment of workers engaged in the indium tin oxide handling process. Tokyo: Government of Japan 2010.Google Scholar
  26. 26.
    Cummings KJ, Nakano M, Omae K, Takeuchi K, Chonan T, Xiao Y, et al. Indium lung disease. Chest. 2012;141(6):1512–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Cummings KJ, Suarthana E, Edwards N, Liang X, Stanton ML, Day GA, et al. Serial evaluations at an indium-tin oxide production facility. Am J Ind Med. 2013;56(3):300–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Chonan T, Taguchi O, Omae K. Interstitial pulmonary disorders in indium-processing workers. Eur Respir J. 2007;29(2):317–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Hamaguchi T, Omae K, Takebayashi T, Kikuchi Y, Yoshioka N, Nishiwaki Y, et al. Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage. Occup Environ Med. 2008;65(1):51–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur Respir J. 2005;25(1):200–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Nakano M, Omae K, Tanaka A, Hirata M, Michikawa T, Kikuchi Y, et al. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health. 2009;51(6):513–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Homma T, Ueno T, Sekizawa K, Tanaka A, Hirata M. Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. J Occup Health. 2003;45(3):137–9.CrossRefPubMedGoogle Scholar
  33. 33.
    International Agency for Research on Cancer (IARC). Indium phosphide. IARC Monogr Eval Carcinog Risks Hum. 2006;86:197–224.Google Scholar
  34. 34.
    Gottschling BC, Maronpot RR, Hailey JR, Peddada S, Moomaw CR, Klaunig JE, et al. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol Sci. 2001;64(1):28–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Morgan DL, Shines CJ, Jeter SP, Wilson RE, Elwell MP, Price HC, et al. Acute pulmonary toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride intratracheally instilled into rats. Environ Res. 1995;71(1):16–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Morgan DL, Shines CJ, Jeter SP, Blazka ME, Elwell MR, Wilson RE, et al. Comparative pulmonary absorption, distribution, and toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride in Sprague–Dawley rats. Toxicol Appl Pharmacol. 1997;147(2):399–410.CrossRefPubMedGoogle Scholar
  37. 37.
    Tanaka A. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicol Appl Pharmacol. 2004;198(3):405–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Conner EA, Yamauchi H, Fowler BA. Alterations in the heme biosynthetic-pathway from the III-V semiconductor–metal, indium arsenide (InAs). Chem Biol Interact. 1995;96(3):273–85.CrossRefPubMedGoogle Scholar
  39. 39.
    Conner EA, Yamauchi H, Fowler BA, Akkerman M. Biological indicators for monitoring exposure toxicity from III-V semiconductors. J Expo Anal Environ Epidemiol. 1993;3(4):431–40.PubMedGoogle Scholar
  40. 40.
    Fowler BA, Conner EA, Yamauchi H. Metabolomic and proteomic biomarkers for III–V semiconductors: chemical-specific porphyrinurias and proteinurias. Toxicol Appl Pharmacol. 2005;206(2):121–30.CrossRefPubMedGoogle Scholar
  41. 41.
    Rocha JBT, Tuerlinckx SM, Schetinger MRC, Folmer V. Effect of group 13 metals on porphobilinogen synthase in vitro. Toxicol Appl Pharmacol. 2004;200(3):169–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Hulle M, De Cremer K, Vanholder R, Cornelis R. In vivo distribution and fractionation of indium in rats after subcutaneous and oral administration of [In-114m]InAs. J Environ Monit. 2005;7(4):365–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu H, Chen C, Chen G, Lee L, Chen H. Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants. Int Arch Occup Environ Health. 2012;85(4):447–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Tanaka A, Hirata M, Homma T, Kiyohara Y. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters. J Occup Health. 2010;52(1):14–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Yamauchi H, Takahashi K, Yamamura Y, Fowler BA. Metabolism of subcutaneous administered indium arsenide in the hamster. Toxicol Appl Pharmacol. 1992;116(1):66–70.CrossRefPubMedGoogle Scholar
  46. 46.
    Castronovo FP, Wagner HN. Comparative toxicity and pharmacodynamics of ionic indium chloride and hydrated indium oxide. J Nucl Med. 1973;14(9):677–82.PubMedGoogle Scholar
  47. 47.
    Fowler BA. Indium. Handbook on the Toxicology of Metals, 3rd Edition 2007, 569–576.Google Scholar
  48. 48.
    Fowler BA, Sexton MJ. Gallium and Semiconductor Compounds. Handbook on the Toxicology of Metals, 3rd Edition 2007. 547–555.Google Scholar
  49. 49.
    Liao Y, Yu H, Ho C, Wu M, Yang C, Chen J, et al. Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers. J Occup Environ Med. 2004;46(9):931–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Liao Y, Hwang L, Kao J, Yiin S, Lin S, Lin C, et al. Lipid peroxidation in workers exposed to aluminium, gallium, indium, arsenic, and antimony in the optoelectronic industry. J Occup Environ Med. 2006;48(8):789–93.CrossRefPubMedGoogle Scholar
  51. 51.
    Foley N, Jaskula B. Gallium - A Smart Metal. USGS Fact Sheet 2013–3006 2013.Google Scholar
  52. 52.
    Shiller AM, Frilot DM. The geochemistry of gallium relative to aluminum in Californian streams. Geochim Cosmochim Acta. 1996;60(8):1323–8.CrossRefGoogle Scholar
  53. 53.
    Shiller AM. Dissolved gallium in the Atlantic Ocean. Mar Chem. 1998;61(1–2):87–99.CrossRefGoogle Scholar
  54. 54.
    Shiller, A. M.; Bairamadgi, G. R. Dissolved gallium in the northwest Pacific and the south and central Atlantic Oceans: Implications for aeolian Fe input and a reconsideration of profiles. Geochemistry Geophysics Geosystems. 2006;7.Google Scholar
  55. 55.
    Orians KJ, Bruland KW. The marine geochemistry of dissolved gallium: a comparison with dissolved aluminum. Geochim Cosmochim Acta. 1988;52(12):2955–62.CrossRefGoogle Scholar
  56. 56.
    Staff K, Brown MB, Chilcott RP, Hider RC, Jones SA, Kong XL. Ga(III) complexes—the effect of metal coordination on potential systemic absorption after topical exposure. Toxicol Lett. 2011;202(3):155–60.CrossRefPubMedGoogle Scholar
  57. 57.
    Kawaguchi H, Shimizu T, Shirakashi T, Shijo Y. Determination of ultratrace gallium in river water by electrothermal atomic absorption spectrometry after preconcentration with solvent extraction and back extraction. Bull Chem Soc Jpn. 1998;71(3):647–50.CrossRefGoogle Scholar
  58. 58.
    Deis LF (Ed). CRC handbook of chemistry and physics (89th edition); CRC Press: Cleveland, Ohio, 2009.Google Scholar
  59. 59.
    Geiger F, Busse CA, Loehrke RI. The vapor-pressure of indium, silver, gallium, copper, tin, and gold between 0.1-bar and 3.0-bar. Int J Thermophys. 1987;8(4):425–36.CrossRefGoogle Scholar
  60. 60.
    Jaskula BW. Gallium: Mineral Commodity Summaries; US Geological Survey: 2016.Google Scholar
  61. 61.•
    Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health. 2010;7(5):2337–61. This is a thorough review of the uses of gallium in medicine, as a chemotherapeutic, and known toxicities.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rzhepishevska O, Ekstrand-Hammarstrom B, Popp M, Bjorn E, Bucht A, Sjostedt A, et al. The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother. 2011;55(12):5568–80.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lovik AN, Restrepo E, Muller DB. The global anthropogenic gallium system: determinants of demand, supply and efficiency improvements. Environ Sci Technol. 2015;49(9):5704–12.CrossRefPubMedGoogle Scholar
  64. 64.
    Burton J, Culkin F, Riley J. The abundances of gallium and germanium in terrestrial materials. Geochim Cosmochim Acta. 1959;16(1–3):151–80.CrossRefGoogle Scholar
  65. 65.
    Orians KJ, Bruland KW. Dissolved gallium in the open ocean. Nature. 1988;332(6166):717–9.CrossRefGoogle Scholar
  66. 66.
    McAlister J, Orians K. Calculation of river-seawater endmembers and differential trace metal scavenging in the Columbia River plume. Estuar Coast Shelf Sci. 2012;99:31–41.CrossRefGoogle Scholar
  67. 67.
    McAlister JA, Orians KJ. Dissolved gallium in the Beaufort Sea of the Western Arctic Ocean: a GEOTRACES cruise in the International Polar Year. Mar Chem. 2015;177:101–9.CrossRefGoogle Scholar
  68. 68.
    Parker CE, Brown MT, Bruland KW. Scandium in the open ocean: a comparison with other group 3 trivalent metals. Geophys Res Lett. 2016;43(6):2758–64.CrossRefGoogle Scholar
  69. 69.
    Qin S, Sun Y, Li Y, Wang J, Zhao C, Gao K. Coal deposits as promising alternative sources for gallium. Earth-Sci Rev. 2015;150:95–101.CrossRefGoogle Scholar
  70. 70.
    Karlsson S, Duker A, Grahn E. Sediment chronologies of As, Bi, and Ga in Sweden—impact of industrialisation. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng. 2007;42(2):155–64.CrossRefGoogle Scholar
  71. 71.
    Ames MR, Gullu G, Beal J, Olmez I. Receptor modeling for elemental source contributions to fine aerosols in New York State. J Air Waste Manage Assoc. 2000;50(5):881–7.CrossRefGoogle Scholar
  72. 72.
    International Agency for Research on Cancer (IARC). Gallium arsenide. IARC Monogr Eval Carcinog Risks Hum. 2006;86:163–96.Google Scholar
  73. 73.
    Meigs JW. Gallium fluoride poisoning: a probable case with skin effects and neurological sequelae. J Occup Environ Med. 1972;14(12):925–6.Google Scholar
  74. 74.
    Ivanoff CS, Ivanoff AE, Hottel TL. Gallium poisoning: a rare case report. Food Chem Toxicol. 2012;50(2):212–5.CrossRefPubMedGoogle Scholar
  75. 75.
    National Center for Biotechnology Information, comps., in PubChem Compound Database; CID = 7963, datasheet = lcss. Available online at accessed 9 Sept 2016.
  76. 76.
    Warrell R, Murphy W, Schulman P, Odwyer P, Heller G. A randomized double-blind-study of gallium nitrate compared with etidronate for acute control of cancer-related hypercalcemia. J Clin Oncol. 1991;9(8):1467–75.CrossRefPubMedGoogle Scholar
  77. 77.
    Zojer N, Keck A, Pecherstorfer M. Comparative tolerability of drug therapies for hypercalcaemia of malignancy. Drug Saf. 1999;21(5):389–406.CrossRefPubMedGoogle Scholar
  78. 78.
    Fowler B, Yamauchi H, Conner E, Akkerman M. Cancer risks for humans from exposure to the semiconductor metals. Scand J Work Environ Health. 1993;19:101–3.PubMedGoogle Scholar
  79. 79.
    Tanaka A, Hirata M, Shiratani M, Koga K, Kiyohara Y. Subacute pulmonary toxicity of copper indium gallium diselenide following intratracheal instillations into the lungs of rats. J Occup Health. 2012;54(3):187–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonUSA
  2. 2.Department of GeosciencesPrinceton UniversityPrincetonUSA
  3. 3.Center for Environmental Health Sciences, MITCambridgeUSA

Personalised recommendations