Advertisement

Current Environmental Health Reports

, Volume 3, Issue 4, pp 478–492 | Cite as

The Relation Between Low-Level Lead Exposure and Oxidative Stress: a Review of the Epidemiological Evidence in Children and Non-Occupationally Exposed Adults

  • Aditi Roy
  • Katarzyna Kordas
Early Life Environmental Health (J Sunyer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Early Life Environmental Health

Abstract

Experimental studies in animals and observational studies in occupationally exposed adults indicate that higher lead exposure results in higher biomarkers of oxidative stress. However, this evidence cannot be extended to the general population who typically experience lower levels of lead exposure. This systematic review evaluates the epidemiological evidence on the association between lead and oxidative stress in non-occupationally exposed general population, with a particular focus on the pediatric population. Studies were identified through a systematic search of Medline and Web of Science. Ultimately, evidence from 15 studies conducted in children and 22 studies in adults from the general population was reviewed. Overall, the published findings are inconsistent, and there are very few well-designed studies on the relation between lead exposure and oxidative stress in the general population. The strength of the current evidence is discussed in light of the methodological approaches employed, and recommendations are made for future research directions. These include designing prospective studies with repeat measurements of clinically relevant oxidative stress markers to answer the question of causality and sensitive windows and reanalyzing previously published data, but using multivariable statistical approaches and adjustment for relevant explanatory factors.

Keywords

Lead Heavy metal Oxidative stress Children Review 

Notes

Compliance with Ethical Standards

Conflict of Interest

Aditi Roy and Katarzyna Kordas declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. 1.
    Bellinger DC. The protean toxicities of lead: new chapters in a familiar story. Int J Environ Res Public Health. 2011;8(7):2593–628. doi: 10.3390/ijerph8072593.CrossRefGoogle Scholar
  2. 2.
    Nemsadze K, Sanikidze T, Ratiani L, Gabunia L, Sharashenidze T. Mechanisms of lead-induced poisoning. Georgian Med News 2009(172–173):92–96.Google Scholar
  3. 3.
    Needleman H. Lead poisoning. Annu Rev Med. 2004;55:209–22. doi: 10.1146/annurev.med.55.091902.103653.CrossRefGoogle Scholar
  4. 4.
    Sies H. Oxidative stress: introductory remarks. In: Sies H, editor. Oxidative stress. London: Academic Press; 1985. p. 1–8.Google Scholar
  5. 5.
    Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9–10):1865–79. doi: 10.1089/ars.2006.8.1865.CrossRefGoogle Scholar
  6. 6.
    Sies H, Jones D. Oxidative stress. In: Fink G, editor. Encyclopedia of stress. 2nd ed. London: Elsevier/Academic Press; 2007. p. 45–8.CrossRefGoogle Scholar
  7. 7.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford: Oxford University Press; 1999.Google Scholar
  8. 8.
    Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601–23. doi: 10.1373/clinchem.2005.061408.CrossRefGoogle Scholar
  9. 9.
    Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3. doi: 10.1016/j.redox.2015.01.002.CrossRefGoogle Scholar
  10. 10.
    Dursun N, Arifoglu C, Suer C, Keskinol L. Blood pressure relationship to nitric oxide, lipid peroxidation, renal function, and renal blood flow in rats exposed to low lead levels. Biol Trace Elem Res. 2005;104(2):141–9. doi: 10.1385/bter:104:2:141.CrossRefGoogle Scholar
  11. 11.
    Muntner P, He J, Vupputuri S, Coresh J, Batuman V. Blood lead and chronic kidney disease in the general United States population: results from NHANES III. Kidney Int. 2003;63(3):1044–50. doi: 10.1046/j.1523-1755.2003.00812.x.CrossRefGoogle Scholar
  12. 12.
    Stohs SJ, Bagchi D. Oxidative mechanism in the toxicity of metal-ions. Free Radic Biol Med. 1995;18(2):321–36. doi: 10.1016/0891-5849(94)00159-h.CrossRefGoogle Scholar
  13. 13.
    Vaziri ND, Liang K, Ding Y. Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int. 1999;56(4):1492–8. doi: 10.1046/j.1523-1755.1999.00670.x.CrossRefGoogle Scholar
  14. 14.
    Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. Lead exposure and cardiovascular disease—a systematic review. Environ Health Perspect. 2007;115(3):472–82. doi: 10.1289/ehp.9785.CrossRefGoogle Scholar
  15. 15.
    Motawei SM, Attalla SM, Gouda HE, El-Harouny MA, El-Mansoury AM. Lead level in pregnant women suffering from pre-eclampsia in Dakahlia, Egypt. Int J Occup Environ Med. 2013;4(1):36–44.Google Scholar
  16. 16.
    Ahamed M, Mehrotra PK, Kumar P, Siddiqui MKJ. Placental lead-induced oxidative stress and preterm delivery. Environ Toxicol Pharmacol. 2009;27(1):70–4. doi: 10.1016/j.etap.2008.08.013.CrossRefGoogle Scholar
  17. 17.
    Sanders T, Liu Y, Buchner V, Tchounwou PB. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health. 2009;24(1):15–45.CrossRefGoogle Scholar
  18. 18.
    Grover P, Rekhadevi PV, Danadevi K, Vuyyuri SB, Mahboob M, Rahman MF. Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health. 2010;213(2):99–106. doi: 10.1016/j.ijheh.2010.01.005.CrossRefGoogle Scholar
  19. 19.
    Malekirad AA, Oryan S, Fani A, Babapor V, Hashemi M, Baeeri M, et al. Study on clinical and biochemical toxicity biomarkers in a zinc-lead mine workers. Toxicol Ind Health. 2010;26(6):331–7. doi: 10.1177/0748233710365697.CrossRefGoogle Scholar
  20. 20.
    Permpongpaiboon T, Nagila A, Pidetcha P, Tuangmungsakulchai K, Tantrarongroj S, Porntadavity S. Decreased paraoxonase 1 activity and increased oxidative stress in low lead-exposed workers. Human & Experimental Toxicology. 2011;30(9):1196–203. doi: 10.1177/0960327110388536.CrossRefGoogle Scholar
  21. 21.
    Bizon A, Antonowicz-Juchniewicz J, Andrzejak R, Milnerowicz H. The influence of the intensity of smoking and years of work in the metallurgy on pro-oxidant/antioxidant balance in the blood of smelters. Toxicol Ind Health. 2013;29(2):149–61. doi: 10.1177/0748233711427054.CrossRefGoogle Scholar
  22. 22.
    Kasperczyk S, Dobrakowski M, Ostalowska A, Kasperczyk A, Wilczyinski S, Wyparlo-Wszelaki M, et al. Lead-elevated activity of xanthine oxidase in lead-exposed workers. Med Pr. 2013;64(2):175–80.Google Scholar
  23. 23.
    Conterato GMM, Bulcao RP, Sobieski R, Moro AM, Charao MF, de Freitas FA, et al. Blood thioredoxin reductase activity, oxidative stress and hematological parameters in painters and battery workers: relationship with lead and cadmium levels in blood. J Appl Toxicol. 2013;33(2):142–50. doi: 10.1002/jat.1731.CrossRefGoogle Scholar
  24. 24.
    Kasperczyk A, Machnik G, Dobrakowski M, Sypniewski D, Birkner E, Kasperczyk S. Gene expression and activity of antioxidant enzymes in the blood cells of workers who were occupationally exposed to lead. Toxicology. 2012;301(1–3):79–84. doi: 10.1016/j.tox.2012.07.002.CrossRefGoogle Scholar
  25. 25.
    Olewinska E, Kasperczyk A, Kapka L, Kozlowska A, Pawlas N, Dobrakowski M, et al. Level of DNA damage in lead-exposed workers. Ann Agric Environ Med. 2010;17(2):231–6.Google Scholar
  26. 26.
    Lin T-S, Wu C-C, Wu J-D, Wei C-H, Oxidative DNA. Damage estimated by urinary 8-hydroxy-2 '-deoxyguanosine and arsenic in glass production workers. Toxicol Ind Health. 2012;28(6):513–21. doi: 10.1177/0748233711416945.CrossRefGoogle Scholar
  27. 27.
    Standard surveillance definitions and classificationsthird national report on human exposure to environmental chemicals. Centers for Disease Control and Prevention. Atlanta, GA: Department of Health and Human Services; 2012.Google Scholar
  28. 28.
    Gurer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med. 2000;29(10):927–45. doi: 10.1016/s0891-5849(00)00413-5.CrossRefGoogle Scholar
  29. 29.
    Hsu PC, Guo YLL. Antioxidant nutrients and lead toxicity. Toxicology. 2002;180(1):33–44. doi: 10.1016/s0300-483x(02)00380-3.CrossRefGoogle Scholar
  30. 30.
    Patrick L. Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev. 2006;11(2):114–27.Google Scholar
  31. 31.
    Ahamed M, Siddiqui MKJ. Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta. 2007;383(1–2):57–64. doi: 10.1016/j.cca.2007.04.024.CrossRefGoogle Scholar
  32. 32.
    Yanez L, Garcia-Nieto E, Rojas E, Carrizales L, Mejia J, Calderon J, et al. DNA damage in blood cells from children exposed to arsenic and lead in a mining area. Environ Res. 2003;93(3):231–40.CrossRefGoogle Scholar
  33. 33.
    Al Bakheet SA, Attafi IM, Maayah ZH, Abd-Allah AR, Asiri YA, Korashy HM. Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environ Pollut. 2013;181:226–32. doi: 10.1016/j.envpol.2013.06.014.CrossRefGoogle Scholar
  34. 34.
    Wu WT, Wu CC, Lin YJ, Shen CY, Liu TY, Yang CY, et al. Changing blood lead levels and oxidative stress with duration of residence among Taiwan immigrants. J Immigr Minor Health. 2013;15(6):1048–56. doi: 10.1007/s10903-013-9820-x.CrossRefGoogle Scholar
  35. 35.
    Ahamed M, Akhtar MJ, Verma S, Kumar A, Siddiqui MK. Environmental lead exposure as a risk for childhood aplastic anemia. Biosci Trends. 2011;5(1):38–43.CrossRefGoogle Scholar
  36. 36.
    Ahamed M, Fareed M, Kumar A, Siddiqui WA, Siddiqui MKJ. Oxidative stress and neurological disorders in relation to blood lead levels in children. Redox Rep. 2008;13(3):117–22. doi: 10.1179/13500008x259213.CrossRefGoogle Scholar
  37. 37.
    • Ni W, Huang Y, Wang X, Zhang J, Wu K. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Sci Total Environ 2014;472:354–362. doi: 10.1016/j.scitotenv.2013.11.032. This cross-sectional study investigates the association of in utero exposure to lead and other heavy metals with oxidative stress at birth by assessing metal concentrations and a marker of DNA oxidation in umbilical cord blood.
  38. 38.
    Martinez SA, Simonella L, Hansen C, Rivolta S, Cancela LM, Virgolini MB. Blood lead levels and enzymatic biomarkers of environmental lead exposure in children in Cordoba, Argentina, after the ban of leaded gasoline. Human & Experimental Toxicology. 2013;32(5):449–63. doi: 10.1177/0960327112454893.CrossRefGoogle Scholar
  39. 39.
    Mendez-Gomez J, Garcia-Vargas GG, Lopez-Carrillo L, Calderon-Aranda ES, Gomez A, Vera E, et al. Genotoxic effects of environmental exposure to arsenic and lead on children in region Lagunera, Mexico. Ann N Y Acad Sci. 2008;1140:358–67. doi: 10.1196/annals.1454.027.CrossRefGoogle Scholar
  40. 40.
    Ahamed M, Verma S, Kumar A, Siddiqui MKJ. Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ. 2005;346(1–3):48–55. doi: 10.1016/j.scitotenv.2004.12.019.CrossRefGoogle Scholar
  41. 41.
    Ahamed M, Verma S, Kumar A, Siddiqui MK. Delta-aminolevulinic acid dehydratase inhibition and oxidative stress in relation to blood lead among urban adolescents. Hum Exp Toxicol. 2006;25(9):547–53.CrossRefGoogle Scholar
  42. 42.
    Jin YP, Liao YJ, Lu CW, Li GX, Yu F, Zhi XP, et al. Health effects in children aged 3-6 years induced by environmental lead exposure. Ecotoxicol Environ Saf. 2006;63(2):313–7. doi: 10.1016/j.ecoenv.2005.05.011.CrossRefGoogle Scholar
  43. 43.
    Ahamed M, Fareed M, Kumar A, Siddiqui WA, Siddiqui MK. Oxidative stress and neurological disorders in relation to blood lead levels in children. Redox Rep. 2008;13(3):117–22. doi: 10.1179/135100008x259213.CrossRefGoogle Scholar
  44. 44.
    Cabral M, Dieme D, Verdin A, Garcon G, Fall M, Bouhsina S, et al. Low-level environmental exposure to lead and renal adverse effects: a cross-sectional study in the population of children bordering the Mbeubeuss landfill near Dakar. Senegal Human & Experimental Toxicology. 2012;31(12):1280–91. doi: 10.1177/0960327112446815.CrossRefGoogle Scholar
  45. 45.
    • Roy A, Queirolo E, Peregalli F, Manay N, Martinez G, Kordas K. Association of blood lead levels with urinary F2-8alpha isoprostane and 8-hydroxy-2-deoxy-guanosine concentrations in first-grade Uruguayan children. Environ Res. 2015;140:127–35. doi: 10.1016/j.envres.2015.03.001 .This study is among the few that have examined the relationship between low-lead exposure and biomarkers of lipid peroxidation and DNA oxidation in environmentally exposed 5–8-year-old children accounting for important explanatory factorsCrossRefGoogle Scholar
  46. 46.
    Diouf A, Garcon G, Diop Y, Ndiaye B, Thiaw C, Fall M, et al. Environmental lead exposure and its relationship to traffic density among Senegalese children: a cross-sectional study. Human & Experimental Toxicology. 2006;25(11):637–44. doi: 10.1177/0960327106074591.CrossRefGoogle Scholar
  47. 47.
    Ahamed M, Akhtar MJ, Verma S, Kumar A, Siddiqui MKJ. Environmental lead exposure as a risk for childhood aplastic anemia. Bioscience Trends. 2011;5(1):38–43. doi: 10.5582/bst.2011.v5.1.38.CrossRefGoogle Scholar
  48. 48.
    Osman K, Zejda JE, Schutz A, Mielzynska D, Elinder CG, Vahter M. Exposure to lead and other metals in children from Katowice district, Poland. Int Arch Occup Environ Health. 1998;71(3):180–6. doi: 10.1007/s004200050268.CrossRefGoogle Scholar
  49. 49.
    Mielzynska D, Siwinska E, Kapka L, Szyfter K, Knudsen LE, Merlo DF. The influence of environmental exposure to complex mixtures including PAHs and lead on genotoxic effects in children living in Upper Silesia, Poland. Mutagenesis. 2006;21(5):295–304. doi: 10.1093/mutage/ge1037.CrossRefGoogle Scholar
  50. 50.
    Jasso-Pineda Y, Diaz-Barriga F, Calderon J, Yanez L, Carrizales L, Perez-Maldonado INDNA. Damage and decreased DNA repair in peripheral blood mononuclear cells in individuals exposed to arsenic and lead in a mining site. Biol Trace Elem Res. 2012;146(2):141–9. doi: 10.1007/s12011-011-9237-0.CrossRefGoogle Scholar
  51. 51.
    Engstrom KS, Vahter M, Johansson G, Lindh CH, Teichert F, Singh R, et al. Chronic exposure to cadmium and arsenic strongly influences concentrations of 8-oxo-7,8-dihydro-2 '-deoxyguanosine in urine. Free Radic Biol Med. 2010;48(9):1211–7. doi: 10.1016/j.freeradbiomed.2010.02.004.CrossRefGoogle Scholar
  52. 52.
    Serafim A, Company R, Lopes B, Rosa J, Cavaco A, Castela G, et al. Assessment of essential and nonessential metals and different metal exposure biomarkers in the human placenta in a population from the south of Portugal. Journal of Toxicology and Environmental Health-Part a-Current Issues. 2012;75(13–15):867–77. doi: 10.1080/15287394.2012.690704.CrossRefGoogle Scholar
  53. 53.
    Wu WT, Liou SH, Lin KJ, Liu TE, Liu SH, Chen CY, et al. Changing blood lead levels and DNA damage (comet assay) among immigrant women in Taiwan. Sci Total Environ. 2009;407(23):5931–6. doi: 10.1016/j.scitotenv.2009.07.025.CrossRefGoogle Scholar
  54. 54.
    Pollack AZ, Schisterman EF, Goldman LR, Mumford SL, Perkins NJ, Bloom MS, et al. Relation of blood cadmium, lead, and mercury levels to biomarkers of lipid peroxidation in premenopausal women. Am J Epidemiol. 2012;175(7):645–52. doi: 10.1093/aje/kwr375.CrossRefGoogle Scholar
  55. 55.
    Kasperczyk A, Dobrakowski M, Czuba ZP, Horak S, Kasperczyk S. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile. Toxicol Appl Pharmacol. 2015;284(3):339–44. doi: 10.1016/j.taap.2015.03.001.CrossRefGoogle Scholar
  56. 56.
    Xu DX, Shen HM, Zhu QX, Chua L, Wang QN, Chia SE, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res. 2003;534(1–2):155–63.CrossRefGoogle Scholar
  57. 57.
    Kiziler AR, Aydemir B, Onaran I, Alici B, Ozkara H, Gulyasar T, et al. High levels of cadmium and lead in seminal fluid and blood of smoking men are associated with high oxidative stress and damage in infertile subjects. Biol Trace Elem Res. 2007;120(1–3):82–91. doi: 10.1007/s12011-007-8020-8.CrossRefGoogle Scholar
  58. 58.
    Pant N, Kumar G, Upadhyay AD, Patel DK, Gupta YK, Chaturvedi PK. Reproductive toxicity of lead, cadmium, and phthalate exposure in men. Environ Sci Pollut Res Int. 2014;21(18):11066–74. doi: 10.1007/s11356-014-2986-5.CrossRefGoogle Scholar
  59. 59.
    Pandya C, Gupta S, Pillai P, Bhandarkar A, Khan A, Bhan A, et al. Association of cadmium and lead with antioxidant status and incidence of benign prostatic hyperplasia in patients of Western India. Biol Trace Elem Res. 2013;152(3):316–26. doi: 10.1007/s12011-013-9630-y.CrossRefGoogle Scholar
  60. 60.
    Jurasovic J, Cvitkovic P, Pizent A, Colak B, Telisman S. Semen quality and reproductive endocrine function with regard to blood cadmium in Croatian male subjects. Biometals. 2004;17(6):735–43.CrossRefGoogle Scholar
  61. 61.
    Sirivarasai J, Kaojarern S, Chanprasertyothin S, Panpunuan P, Petchpoung K, Tatsaneeyapant A, et al. Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: an analysis based on the EGAT study. Biomed Res Int. 2015;2015:856319. doi: 10.1155/2015/856319.CrossRefGoogle Scholar
  62. 62.
    Anis TH, ElKaraksy A, Mostafa T, Gadalla A, Imam H, Hamdy L et al. Chronic lead exposure may be associated with erectile dysfunction. J Sex Med 2007;4(5):1428–34; discussion 1434–6. doi: 10.1111/j.1743-6109.2007.00587.x.
  63. 63.
    Lin TH, Chen JG, Liaw JM, Juang JG. Trace elements and lipid peroxidation in uremic patients on hemodialysis. Biol Trace Elem Res. 1996;51(3):277–83. doi: 10.1007/bf02784082.CrossRefGoogle Scholar
  64. 64.
    Mancinelli R, Barlocci E, Ciprotti M, Senofonte O, Fidente RM, Draisci R, et al. Blood thiamine, zinc, selenium, lead and oxidative stress in a population of male and female alcoholics: clinical evidence and gender differences. Ann Ist Super Sanita. 2013;49(1):65–72. doi: 10.4415/ann_13_01_11.CrossRefGoogle Scholar
  65. 65.
    Lee DH, Lim JS, Song K, Boo Y, Jacobs DR. Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the US population: results from the Third National Health and Nutrition Examination Survey. Environ Health Perspect. 2006;114(3):350–4. doi: 10.1289/ehp.8518.CrossRefGoogle Scholar
  66. 66.
    Merzenich H, Hartwig A, Ahrens W, Beyersmann D, Schlepegrell R, Scholze M, et al. Biomonitoring on carcinogenic metals and oxidative DNA damage in a cross-sectional study. Cancer Epidemiol Biomark Prev. 2001;10(5):515–22.Google Scholar
  67. 67.
    Pizent A, Macan J, Jurasovic J, Varnai VM, Milkovic-Kraus S, Kanceljak-Macan B. Association of toxic and essential metals with atopy markers and ventilatory lung function in women and men. Sci Total Environ. 2008;390(2–3):369–76. doi: 10.1016/j.scitotenv.2007.10.049.CrossRefGoogle Scholar
  68. 68.
    Komatsu F, Kagawa Y, Kawabata T, Kaneko Y, Chimedregzen U, Purvee B, et al. A high accumulation of hair minerals in Mongolian people: 2(nd) report; influence of manganese, iron, lead, cadmium and aluminum to oxidative stress, parkinsonism and arthritis. Curr Aging Sci. 2011;4(1):42–56.CrossRefGoogle Scholar
  69. 69.
    • Hossain MB, Barregard L, Sallsten G, Broberg K. Cadmium, mercury, and lead in kidney cortex are not associated with urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in living kidney donors. Int Arch Occup Environ Health. 2014;87(3):315–22. doi: 10.1007/s00420-013-0863-z .Toxic metal exposure has been associated with metal accumulation in and disease of the kidney; this study in healthy, environmentally exposed adults examined the relationship of kidney lead concentrations with urinary concentration of a DNA oxidation marker adjusting for other kidney metal concentrations and important covariatesCrossRefGoogle Scholar
  70. 70.
    Sciskalska M, Zalewska M, Grzelak A, Milnerowicz H. The influence of the occupational exposure to heavy metals and tobacco smoke on the selected oxidative stress markers in smelters. Biol Trace Elem Res. 2014;159(1–3):59–68. doi: 10.1007/s12011-014-9984-9.CrossRefGoogle Scholar
  71. 71.
    Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M. Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male. 2012;15(3):159–65. doi: 10.3109/13685538.2012.669436.CrossRefGoogle Scholar
  72. 72.
    Jenkins RR. Exercise and oxidative stress methodology: a critique. Am J Clin Nutr. 2000;72(2):670S–4S.CrossRefGoogle Scholar
  73. 73.
    Da Costa LA, Garcia-Bailo B, Badawi A, El-Sohemy A. Genetic determinants of dietary antioxidant status. Recent Advances in Nutrigenetics and Nutrigenomics. 2012;108:179–200. doi: 10.1016/b978-0-12-398397-8.00008-3.CrossRefGoogle Scholar
  74. 74.
    Fabre EE, Raynaud-Simon A, Golmard JL, Hebert M, Dulcire X, Succari M, et al. Gene polymorphisms of oxidative stress enzymes: prediction of elderly renutrition. Am J Clin Nutr. 2008;87(5):1504–12.CrossRefGoogle Scholar
  75. 75.
    Czerska M, Zielinski M, Gromadzinska J. Isoprostanes—a novel major group of oxidative stress markers. Int J Occup Med Environ Health. 2016;29(2):179–90. doi: 10.13075/ijomeh.1896.00596.CrossRefGoogle Scholar
  76. 76.
    Gutteridge JM, Tickner TR. The characterisation of thiobarbituric acid reactivity in human plasma and urine. Anal Biochem. 1978;91(1):250–7.CrossRefGoogle Scholar
  77. 77.
    Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1–2):1–9.CrossRefGoogle Scholar
  78. 78.
    Svecova V, Rossner P, Dostal M, Topinka J, Solansky I, Sram RJ. Urinary 8-oxodeoxyguanosine levels in children exposed to air pollutants. Mutation research-fundamental and molecular mechanisms of. Mutagenesis. 2009;662(1–2):37–43. doi: 10.1016/j.mrfmmm.2008.12.003.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Nutritional SciencesPennsylvania State UniversityState CollegeUSA
  2. 2.Department of Epidemiology and Environmental Health, School of Public Health and Health ProfessionsState University of New YorkBuffaloUSA
  3. 3.Department of Pediatrics, Division of General Pediatrics, Center for Asthma and Environmental Health ResearchVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations