Current Environmental Health Reports

, Volume 3, Issue 3, pp 258–269 | Cite as

Air Pollution Stress and the Aging Phenotype: The Telomere Connection

  • Dries S. Martens
  • Tim S. NawrotEmail author
Early Life Environmental Health (J Sunyer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Early Life Environmental Health


Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the “exposome”. If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.


Air pollution Telomere Aging Exposome 



This research was funded by the EU Program “Ideas” (ERC-2012-StG 310898) and by the Flemish Scientific Fund (FWO, G073315N/G.0880.13).

Compliance with Ethical Standards

Conflict of Interest

Dries S. Martens and Tim S. Nawrot declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. 1.
    Levy JI, Hammitt JK, Spengler JD. Estimating the mortality impacts of particulate matter: what can be learned from between-study variability? Environ Health Perspect. 2000;108(2):109–17.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Nawrot TS, Perez L, Kunzli N, et al. Public health importance of triggers of myocardial infarction: a comparative risk assessment. Lancet. 2011;377(9767):732–40.PubMedCrossRefGoogle Scholar
  3. 3.
    Provost EB, Louwies T, Cox B, et al. Short-term fluctuations in personal black carbon exposure are associated with rapid changes in carotid arterial stiffening. Environ Int. 2016;88:228–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Beelen R, Raaschou-Nielsen O, Stafoggia M, et al. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 2014;383(9919):785–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Beelen R, Stafoggia M, Raaschou-Nielsen O, et al. Long-term exposure to air pollution and cardiovascular mortality: an analysis of 22 European cohorts. Epidemiology. 2014;25(3):368–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Hamra GB, Guha N, Cohen A, et al. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect. 2014;122(9):906–11.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Laden F, Schwartz J, Speizer FE, et al. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med. 2006;173(6):667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Provost EB, Madhloum N, Int Panis L, et al. Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS One. 2015;10(5):e0127014.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    WHO. Health Risks of Particulate Matter from Long-range Transboundary Air Pollution (World Health Organization). 2006.
  10. 10.
    Pope 3rd CA, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360(4):376–86.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hanninen O, Knol AB, Jantunen M, et al. Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ Health Perspect. 2014;122(5):439–46.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Collaborators GBDRF, Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.CrossRefGoogle Scholar
  13. 13.
    Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–4.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dietert RR, DeWitt JC, Germolec DR, et al. Breaking patterns of environmentally influenced disease for health risk reduction: immune perspectives. Environ Health Perspect. 2010;118(8):1091–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Arbeev KG, Ukraintseva SV, Akushevich I, et al. Age trajectories of physiological indices in relation to healthy life course. Mech Ageing Dev. 2011;132(3):93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Belsky DW, Caspi A, Houts R, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112(30):E4104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Jacobs L, Buczynska A, Walgraeve C, et al. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons. Environ Res. 2012;117:60–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Liang R, Zhang B, Zhao X, et al. Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens. 2014;32(11):2130–40. discussion 41.PubMedCrossRefGoogle Scholar
  19. 19.
    Pieters N, Koppen G, Van Poppel M, et al. Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environ Health Perspect. 2015;123(7):737–42.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Calderon-Garciduenas L, Franco-Lira M, D'Angiulli A, et al. Mexico city normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease. Environ Res. 2015;140:579–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Eze IC, Schaffner E, Fischer E, et al. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ Int. 2014;70:95–105.PubMedCrossRefGoogle Scholar
  22. 22.
    Struijker-Boudier HA, Heijnen BF, Liu YP, et al. Phenotyping the microcirculation. Hypertension. 2012;60(2):523–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Adar SD, Klein R, Klein BE, et al. Air Pollution and the microvasculature: a cross-sectional assessment of in vivo retinal images in the population-based multi-ethnic study of atherosclerosis (MESA). PLoS Med. 2010;7(11):e1000372.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Louwies T, Panis LI, Kicinski M, et al. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ Health Perspect. 2013;121(9):1011–6.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wild CP, Kleinjans J. Children and increased susceptibility to environmental carcinogens: evidence or empathy? Cancer Epidemiol Biomarkers Prev. 2003;12(12):1389–94.PubMedGoogle Scholar
  26. 26.
    Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Wright WE, Tesmer VM, Huffman KE, et al. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997;11(21):2801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Levy MZ, Allsopp RC, Futcher AB, et al. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225(4):951–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1(1):72–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Campisi J, d'Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8(9):729–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26(5):867–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Shay JW, Wright WE, Werbin H. Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta. 1991;1072(1):1–7.PubMedGoogle Scholar
  34. 34.
    Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Hiyama K, Hirai Y, Kyoizumi S, et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol. 1995;155(8):3711–5.PubMedGoogle Scholar
  37. 37.
    de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005;19(18):2100–10.PubMedCrossRefGoogle Scholar
  38. 38.
    O'Sullivan RJ, Karlseder J. Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol. 2010;11(3):171–81.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Greider CW. Telomeres do D-loop-T-loop. Cell. 1999;97(4):419–22.PubMedCrossRefGoogle Scholar
  41. 41.
    Aviv A, Valdes AM, Spector TD. Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol. 2006;35(6):1424–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35:112–31.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Daniali L, Benetos A, Susser E, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 2013;4:1597.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mather KA, Jorm AF, Parslow RA, et al. Is telomere length a biomarker of aging? a review. J Gerontol A Biol Sci Med Sci. 2011;66(2):202–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Benetos A, Okuda K, Lajemi M, et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension. 2001;37(2 Pt 2):381–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Cawthon RM, Smith KR, O'Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Nawrot TS, Staessen JA, Holvoet P, et al. Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking. Front Biosci (Elite Ed). 2010;2:1164–8.Google Scholar
  49. 49.
    Samani NJ, Boultby R, Butler R, et al. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham heart study. Aging Cell. 2006;5(4):325–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Kuznetsova T, Codd V, Brouilette S, et al. Association between left ventricular mass and telomere length in a population study. Am J Epidemiol. 2010;172(4):440–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Bischoff C, Petersen HC, Graakjaer J, et al. No association between telomere length and survival among the elderly and oldest old. Epidemiology. 2006;17(2):190–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Martin-Ruiz CM, Gussekloo J, van Heemst D, et al. Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell. 2005;4(6):287–90.PubMedCrossRefGoogle Scholar
  56. 56.
    Hjelmborg JB, Dalgard C, Moller S, et al. The heritability of leucocyte telomere length dynamics. J Med Genet. 2015;52(5):297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Slagboom PE, Droog S, Boomsma DI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1994;55(5):876–82.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Vasa-Nicotera M, Brouilette S, Mangino M, et al. Mapping of a major locus that determines telomere length in humans. Am J Hum Genet. 2005;76(1):147–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Nawrot TS, Staessen JA, Gardner JP, et al. Telomere length and possible link to X chromosome. Lancet. 2004;363(9408):507–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Andrew T, Aviv A, Falchi M, et al. Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet. 2006;78(3):480–6.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gardner M, Bann D, Wiley L, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27.PubMedCrossRefGoogle Scholar
  62. 62.
    Kimura M, Cherkas LF, Kato BS, et al. Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4(2):e37.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Okuda K, Bardeguez A, Gardner JP, et al. Telomere length in the newborn. Pediatr Res. 2002;52(3):377–81.PubMedCrossRefGoogle Scholar
  64. 64.
    Kimura M, Gazitt Y, Cao X, et al. Synchrony of telomere length among hematopoietic cells. Exp Hematol. 2010;38(10):854–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Youngren K, Jeanclos E, Aviv H, et al. Synchrony in telomere length of the human fetus. Hum Genet. 1998;102(6):640–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Heidinger BJ, Blount JD, Boner W, et al. Telomere length in early life predicts lifespan. Proc Natl Acad Sci U S A. 2012;109(5):1743–8.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Aubert G, Baerlocher GM, Vulto I, et al. Collapse of telomere homeostasis in hematopoietic cells caused by heterozygous mutations in telomerase genes. PLoS Genet. 2012;8(5):e1002696.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Frenck Jr RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A. 1998;95(10):5607–10.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mitchell C, Hobcraft J, McLanahan SS, et al. Social disadvantage, genetic sensitivity, and children's telomere length. Proc Natl Acad Sci U S A. 2014;111(16):5944–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.CrossRefGoogle Scholar
  71. 71.
    Sahin E, DePinho RA. Axis of ageing: telomeres, p53 and mitochondria. Nat Rev Mol Cell Biol. 2012;13(6):397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Liu P, Demple B. DNA repair in mammalian mitochondria: much more than we thought? Environ Mol Mutagen. 2010;51(5):417–26.PubMedGoogle Scholar
  73. 73.
    Singh KK. Mitochondria damage checkpoint, aging, and cancer. Ann N Y Acad Sci. 2006;1067:182–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1):41–52.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Park SH, Ozden O, Jiang H, et al. Sirt3, mitochondrial ROS, ageing, and carcinogenesis. Int J Mol Sci. 2011;12(9):6226–39.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hochhauser D. Relevance of mitochondrial DNA in cancer. Lancet. 2000;356(9225):181–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Kuo JH, Chu YL, Yang JS, et al. Cantharidin induces apoptosis in human bladder cancer TSGH 8301 cells through mitochondria-dependent signal pathways. Int J Oncol. 2010;37(5):1243–50.PubMedGoogle Scholar
  78. 78.
    Cree LM, Patel SK, Pyle A, et al. Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets. Diabetologia. 2008;51(8):1440–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Gianotti TF, Sookoian S, Dieuzeide G, et al. A decreased mitochondrial DNA content is related to insulin resistance in adolescents. Obesity (Silver Spring). 2008;16(7):1591–5.CrossRefGoogle Scholar
  80. 80.
    Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002;106(5):544–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Roy Chowdhury SK, Sangle GV, Xie X, et al. Effects of extensively oxidized low-density lipoprotein on mitochondrial function and reactive oxygen species in porcine aortic endothelial cells. Am J Physiol Endocrinol Metab. 2010;298(1):E89–98.PubMedCrossRefGoogle Scholar
  82. 82.
    Harrison CM, Pompilius M, Pinkerton KE, et al. Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production. Environ Health Perspect. 2011;119(5):676–81.PubMedCrossRefGoogle Scholar
  83. 83.
    Knight-Lozano CA, Young CG, Burow DL, et al. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation. 2002;105(7):849–54.PubMedCrossRefGoogle Scholar
  84. 84.
    Hou L, Zhu ZZ, Zhang X, et al. Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health. 2010;9:48.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Halvorsen CP, Andolf E, Hu J, et al. Discordant twin growth in utero and differences in blood pressure and endothelial function at 8 years of age. J Intern Med. 2006;259(2):155–63.PubMedCrossRefGoogle Scholar
  86. 86.
    Leeson CP, Kattenhorn M, Morley R, et al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation. 2001;103(9):1264–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Aubert G, Hills M, Lansdorp PM. Telomere length measurement-caveats and a critical assessment of the available technologies and tools. Mutat Res. 2012;730(1-2):59–67.PubMedCrossRefGoogle Scholar
  88. 88.
    Montpetit AJ, Alhareeri AA, Montpetit M, et al. Telomere length: a review of methods for measurement. Nurs Res. 2014;63(4):289–99.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Vera E, Blasco MA. Beyond average: potential for measurement of short telomeres. Aging (Albany NY). 2012;4(6):379–92.PubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kimura M, Stone RC, Hunt SC, et al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat Protoc. 2010;5(9):1596–607.PubMedCrossRefGoogle Scholar
  91. 91.
    Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30(10):e47.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Elbers CC, Garcia ME, Kimura M, et al. Comparison between southern blots and qPCR analysis of leukocyte telomere length in the health ABC study. J Gerontol A Biol Sci Med Sci. 2014;69(5):527–31.PubMedCrossRefGoogle Scholar
  95. 95.
    Baird DM, Rowson J, Wynford-Thomas D, et al. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003;33(2):203–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Canela A, Vera E, Klatt P, et al. High-throughput telomere length quantification by FISH and its application to human population studies. Proc Natl Acad Sci U S A. 2007;104(13):5300–5.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rufer N, Dragowska W, Thornbury G, et al. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol. 1998;16(8):743–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31(11):e61.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hou L, Zhang X, Dioni L, et al. Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: a repeated-measure study. Part Fibre Toxicol. 2013;10:17.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Janssen BG, Munters E, Pieters N, et al. Placental mitochondrial DNA content and particulate air pollution during in utero life. Environ Health Perspect. 2012;120(9):1346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7(2):161–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005;592(1-2):119–37.PubMedCrossRefGoogle Scholar
  104. 104.
    Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15(1):1–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Soberanes S, Urich D, Baker CM, et al. Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem. 2009;284(4):2176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    von Zglinicki T, Saretzki G, Docke W, et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res. 1995;220(1):186–93.CrossRefGoogle Scholar
  107. 107.
    Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res. 1998;239(1):152–60.PubMedCrossRefGoogle Scholar
  108. 108.
    Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–84.PubMedCrossRefGoogle Scholar
  109. 109.
    von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28(1):64–74.CrossRefGoogle Scholar
  110. 110.••
    Sahin E, Colla S, Liesa M, et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature. 2011;470(7334):359–65. These authors made a substantial contribution in unravelling the link between telomeres, mitochondria and aging.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Yamamoto H, Schoonjans K, Auwerx J. Sirtuin functions in health and disease. Mol Endocrinol. 2007;21(8):1745–55.PubMedCrossRefGoogle Scholar
  112. 112.
    Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22.PubMedCrossRefGoogle Scholar
  113. 113.
    Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem. 2005;280(16):16456–60.PubMedCrossRefGoogle Scholar
  114. 114.
    Narala SR, Allsopp RC, Wells TB, et al. SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell. 2008;19(3):1210–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.PubMedCrossRefGoogle Scholar
  116. 116.
    Aquilano K, Vigilanza P, Baldelli S, et al. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J Biol Chem. 2010;285(28):21590–9.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell. 2010;9(2):285–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.•
    Pieters N, Janssen BG, Dewitte H, et al. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect. 2015. This study integrates different aging related molecular markers in elderly in association with long-term air pollution exposure. Google Scholar
  120. 120.
    Wong JY, De Vivo I, Lin X, et al. Cumulative PM(2.5) exposure and telomere length in workers exposed to welding fumes. J Toxicol Environ Health A. 2014;77(8):441–55.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hou L, Wang S, Dou C, et al. Air pollution exposure and telomere length in highly exposed subjects in Beijing, China: a repeated-measure study. Environ Int. 2012;48:71–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Dioni L, Hoxha M, Nordio F, et al. Effects of short-term exposure to inhalable particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. Environ Health Perspect. 2011;119(5):622–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Hoxha M, Dioni L, Bonzini M, et al. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health. 2009;8:41.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Xia Y, Chen R, Wang C, et al. Ambient air pollution, blood mitochondrial DNA copy number and telomere length in a panel of diabetes patients. Inhal Toxicol. 2015;27(10):481–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Shan M, Yang X, Ezzati M, et al. A feasibility study of the association of exposure to biomass smoke with vascular function, inflammation, and cellular aging. Environ Res. 2014;135:165–72.PubMedCrossRefGoogle Scholar
  126. 126.•
    McCracken J, Baccarelli A, Hoxha M, et al. Annual ambient black carbon associated with shorter telomeres in elderly men: Veterans Affairs Normative Aging Study. Environ Health Perspect. 2010;118(11):1564–70. First study on telomere attrition and long-term air pollution exposure in elderly.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Weng NP, Granger L, Hodes RJ. Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci U S A. 1997;94(20):10827–32.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.•
    Bijnens E, Zeegers MP, Gielen M, et al. Lower placental telomere length may be attributed to maternal residential traffic exposure; a twin study. Environ Int. 2015;79:1–7. This study provides evidence that maternal traffic exposure is linked with telomere length in early life.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhong J, Cayir A, Trevisi L, et al. Traffic-related air pollution, blood pressure, and adaptive response of mitochondrial abundance. Circulation. 2016;133(4):378–87.PubMedCrossRefGoogle Scholar
  130. 130.
    Rappaport SM, Smith MT. Epidemiology. Environment and disease risks. Science. 2010;330(6003):460–1.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24–32.PubMedCrossRefGoogle Scholar
  132. 132.
    Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A. 2004;101(49):17312–5.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Crous-Bou M, Fung TT, Prescott J, et al. Mediterranean diet and telomere length in nurses' health study: population based cohort study. BMJ. 2014;349:g6674.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Steptoe A, Hamer M, Butcher L, et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25(7):1292–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Adler N, Pantell MS, O'Donovan A, et al. Educational attainment and late life telomere length in the health, aging and body composition study. Brain Behav Immun. 2013;27(1):15–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Muezzinler A, Zaineddin AK, Brenner H. Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis. Obes Rev. 2014;15(3):192–201.PubMedCrossRefGoogle Scholar
  137. 137.
    Liang G, Schernhammer E, Qi L, et al. Associations between rotating night shifts, sleep duration, and telomere length in women. PLoS One. 2011;6(8):e23462.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Surtees PG, Wainwright NW, Pooley KA, et al. Life stress, emotional health, and mean telomere length in the European Prospective Investigation into cancer (EPIC)-Norfolk population study. J Gerontol A Biol Sci Med Sci. 2011;66(11):1152–62.PubMedCrossRefGoogle Scholar
  139. 139.
    Entringer S, Epel ES, Lin J, et al. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstet Gynecol. 2013;208(2):134 e1–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Marchetto NM, Glynn RA, Ferry ML, et al. Prenatal stress and newborn telomere length. Am J Obstet Gynecol. 2016.Google Scholar
  141. 141.
    Salihu HM, Pradhan A, King L, et al. Impact of intrauterine tobacco exposure on fetal telomere length. Am J Obstet Gynecol. 2015;212(2):205 e1–8.CrossRefGoogle Scholar
  142. 142.
    Lin S, Huo X, Zhang Q, et al. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS One. 2013;8(4):e60815.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Centre for Environmental SciencesHasselt UniversityHasseltBelgium
  2. 2.Department of Public Health & Primary CareLeuven UniversityLeuvenBelgium

Personalised recommendations