Current Environmental Health Reports

, Volume 3, Issue 3, pp 238–249 | Cite as

Pediatric Asthma and the Indoor Microbial Environment

  • Lidia CasasEmail author
  • Christina Tischer
  • Martin Täubel
Early Life Environmental Health (J Sunyer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Early Life Environmental Health


The global increase in the prevalence of asthma has been related to several risk factors; many of them linked to the “westernization” process and the characteristics of the indoor microbial environment during early life may play an important role. Living in moisture damaged homes contributes to the exacerbation and development of asthma. However, living in homes with a rich variety and high levels of microbes (e.g., traditional farming environments) may confer protection. While the results of previous research are rather consistent when it comes to observation/report of indoor moisture damage or when comparing farming versus non-farming homes, when actual measures targeting indoor microbial exposure are included, the picture becomes less clear and the associations appear inconsistent. This may partly be due to limitations of sampling and measurement techniques that make comparisons difficult and provide an incomplete picture of the indoor microbial environment and in particular also human exposure. In this regard, new generation sequencing techniques represent a potential revolution in better understanding the impact of the indoor microbiome on human health.


Asthma Children Indoor microbes Dampness 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as:• Of importance

  1. 1.
    Asher MI, Montefort S, Björkstén B, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733–43. doi: 10.1016/S0140-6736(06)69283-0.PubMedCrossRefGoogle Scholar
  2. 2.
    Pearce N, Aït-Khaled N, Beasley R, et al. Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax. 2007;62:758–66. doi: 10.1136/thx.2006.070169.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Duijts L, Reiss IK, Brusselle G, de Jongste JC. Early origins of chronic obstructive lung diseases across the life course. Eur J Epidemiol. 2014;29:871–85. doi: 10.1007/s10654-014-9981-5.PubMedCrossRefGoogle Scholar
  4. 4.
    Mendell MJ, Mirer AG, Cheung K, et al. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect. 2011;119:748–56. doi: 10.1289/ehp.1002410.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pekkanen J, Hyvärinen A, Haverinen-Shaughnessy U, et al. Moisture damage and childhood asthma: a population-based incident case–control study. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2007;29:509–15. doi: 10.1183/09031936.00040806.Google Scholar
  6. 6.
    von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol. 2010;10:861–8. doi: 10.1038/nri2871.CrossRefGoogle Scholar
  7. 7.
    Chipps BE, Bacharier LB, Harder JM. Phenotypic expressions of childhood wheezing and asthma: implications for therapy. J Pediatr. 2011;158:878–884.e1. doi: 10.1016/j.jpeds.2011.01.057.PubMedCrossRefGoogle Scholar
  8. 8.
    Siroux V, Garcia-Aymerich J. The investigation of asthma phenotypes. Curr Opin Allergy Clin Immunol. 2011;11:393–9. doi: 10.1097/ACI.0b013e32834a955a.PubMedCrossRefGoogle Scholar
  9. 9.
    Martinez FD, Wright AL, Taussig LM, et al. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133–8. doi: 10.1056/NEJM199501193320301.PubMedCrossRefGoogle Scholar
  10. 10.
    Henderson J, Granell R, Heron J, et al. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax. 2008;63:974–80. doi: 10.1136/thx.2007.093187.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Savenije OE, Granell R, Caudri D, et al. Comparison of childhood wheezing phenotypes in 2 birth cohorts: ALSPAC and PIAMA. J Allergy Clin Immunol. 2011;127:1505–1512.e14. doi: 10.1016/j.jaci.2011.02.002.PubMedCrossRefGoogle Scholar
  12. 12.
    Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir Crit Care Med. 2014;189:129–38. doi: 10.1164/rccm.201307-1198OC.PubMedGoogle Scholar
  13. 13.
    Casas L, Tiesler C, Thiering E, et al. Indoor factors and behavioural problems in children: The GINIplus and LISAplus birth cohort studies. Int J Hyg Environ Health. 2013;216:146–54. doi: 10.1016/j.ijheh.2012.03.006.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen C-M, Thiering E, Doekes G, et al. Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe. Indoor Air. 2012;22:24–32. doi: 10.1111/j.1600-0668.2011.00740.x.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Y-F, Shyu H-W, Chang Y-C, et al. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway. Toxicol Appl Pharmacol. 2012;259:177–86. doi: 10.1016/j.taap.2011.12.022.PubMedCrossRefGoogle Scholar
  16. 16.
    Heinrich J, Gehring U, Douwes J, et al. Pets and vermin are associated with high endotoxin levels in house dust. Clin Exp allergy J Br Soc Allergy Clin Immunol. 2001;31:1839–45.CrossRefGoogle Scholar
  17. 17.
    Schram D, Doekes G, Boeve M, et al. Bacterial and fungal components in house dust of farm children, Rudolf Steiner school children and reference children—the PARSIFAL Study. Allergy. 2005;60:611–8. doi: 10.1111/j.1398-9995.2005.00748.x.PubMedCrossRefGoogle Scholar
  18. 18.
    Sordillo JE, Alwis UK, Hoffman E, et al. Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environ Health Perspect. 2011;119:189–95. doi: 10.1289/ehp.1002004.PubMedCrossRefGoogle Scholar
  19. 19.
    Waser M, Schierl R, von Mutius E, et al. Determinants of endotoxin levels in living environments of farmers’ children and their peers from rural areas. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2004;34:389–97.CrossRefGoogle Scholar
  20. 20.
    Gehring U, Heinrich J, Hoek G, et al. Bacteria and mould components in house dust and children’s allergic sensitisation. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2007;29:1144–53. doi: 10.1183/09031936.00118806.Google Scholar
  21. 21.
    Thorne PS, Cohn RD, Mav D, et al. Predictors of endotoxin levels in U.S. housing. Environ Health Perspect. 2009;117:763–71. doi: 10.1289/ehp.11759.PubMedCrossRefGoogle Scholar
  22. 22.
    Casas L, Tischer C, Wouters IM, et al. Endotoxin, extracellular polysaccharides, and β(1–3)-glucan concentrations in dust and their determinants in four European birth cohorts: results from the HITEA project. Indoor Air. 2013;23:208–18. doi: 10.1111/ina.12017.PubMedCrossRefGoogle Scholar
  23. 23.
    Schram-Bijkerk D, Doekes G, Douwes J, et al. Bacterial and fungal agents in house dust and wheeze in children: the PARSIFAL study. Clin Exp allergy J Br Soc Allergy Clin Immunol. 2005;35:1272–8. doi: 10.1111/j.1365-2222.2005.02339.x.CrossRefGoogle Scholar
  24. 24.
    Valkonen M, Wouters IM, Täubel M, et al. Bacterial exposures and associations with atopy and asthma in children. PLoS ONE. 2015;10, e0131594. doi: 10.1371/journal.pone.0131594.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Bornehag CG, Blomquist G, Gyntelberg F, et al. Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to “dampness” in buildings and health effects (NORDDAMP). Indoor Air. 2001;11:72–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Tischer CG, Hohmann C, Thiering E, et al. Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy. 2011;66:1570–9. doi: 10.1111/j.1398-9995.2011.02712.x.PubMedCrossRefGoogle Scholar
  27. 27.
    Engman LH, Bornehag C-G, Sundell J. How valid are parents’ questionnaire responses regarding building characteristics, mouldy odour, and signs of moisture problems in Swedish homes? Scand J Public Health. 2007;35:125–32. doi: 10.1080/14034940600975658.PubMedCrossRefGoogle Scholar
  28. 28.
    Haverinen-Shaughnessy U, Borras-Santos A, Turunen M, et al. Occurrence of moisture problems in schools in three countries from different climatic regions of Europe based on questionnaires and building inspections—the HITEA study. Indoor Air. 2012. doi: 10.1111/j.1600-0668.2012.00780.x.PubMedGoogle Scholar
  29. 29.
    Reponen T, Vesper S, Levin L, et al. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Ann Allergy, Asthma Immunol Off Publ Am Coll Allergy, Asthma, Immunol. 2011;107:120–6. doi: 10.1016/j.anai.2011.04.018.CrossRefGoogle Scholar
  30. 30.
    Hyvärinen A, Roponen M, Tiittanen P, et al. Dust sampling methods for endotoxin—an essential, but underestimated issue. Indoor Air. 2006;16:20–7. doi: 10.1111/j.1600-0668.2005.00392.x.PubMedCrossRefGoogle Scholar
  31. 31.
    IOM. Damp indoor spaces and health. 2004; doi:  10.17226/11011
  32. 32.
    Hyvärinen A, Vahteristo M, Meklin T, et al. Temporal and spatial variation of fungal concentrations in indoor air. Aerosol Sci. Technol. 2001.Google Scholar
  33. 33.
    Noss I, Wouters IM, Visser M, et al. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Appl Environ Microbiol. 2008;74:5621–7. doi: 10.1128/AEM.00619-08.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Adams RI, Tian Y, Taylor JW, et al. Passive dust collectors for assessing airborne microbial material. Microbiome. 2015;3:46. doi: 10.1186/s40168-015-0112-7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.•
    Kanchongkittiphon W, Mendell MJ, Gaffin JM, et al. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect. 2015;123:6–20. doi: 10.1289/ehp.1307922. This is the most recent review on the effect of indoor dampness on asthma.PubMedCrossRefGoogle Scholar
  36. 36.
    Braun-Fahrländer C, Riedler J, Herz U, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347:869–77. doi: 10.1056/NEJMoa020057.PubMedCrossRefGoogle Scholar
  37. 37.
    Roponen M, Hyvärinen A, Hirvonen M-R, et al. Change in IFN-gamma-producing capacity in early life and exposure to environmental microbes. J Allergy Clin Immunol. 2005;116:1048–52. doi: 10.1016/j.jaci.2005.08.039.PubMedCrossRefGoogle Scholar
  38. 38.
    Karvonen AM, Hyvärinen A, Gehring U, et al. Exposure to microbial agents in house dust and wheezing, atopic dermatitis and atopic sensitization in early childhood: a birth cohort study in rural areas. Clin Exp Allergy. 2012;42:1246–56. doi: 10.1111/j.1365-2222.2012.04002.x.PubMedCrossRefGoogle Scholar
  39. 39.
    Tischer C, Gehring U, Chen C-M, et al. Respiratory health in children, and indoor exposure to (1,3)-β-D-glucan, EPS mould components and endotoxin. Eur Respir J. 2011;37:1050–9. doi: 10.1183/09031936.00091210.PubMedCrossRefGoogle Scholar
  40. 40.•
    Tischer C, Casas L, Wouters IM, et al. Early exposure to bio-contaminants and asthma up to 10 years of age: results of the HITEA study. Eur Respir J. 2015;45:328–37. doi: 10.1183/09031936.00060214. Multicenter study showing geographical disparities in the effects on asthma and related symptoms of the indoor concentrations of microbial agents at home during early life.PubMedCrossRefGoogle Scholar
  41. 41.
    Douwes J, van Strien R, Doekes G, et al. Does early indoor microbial exposure reduce the risk of asthma? The Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Allergy Clin Immunol. 2006;117:1067–73. doi: 10.1016/j.jaci.2006.02.002.PubMedCrossRefGoogle Scholar
  42. 42.
    Campo P, Kalra HK, Levin L, et al. Influence of dog ownership and high endotoxin on wheezing and atopy during infancy. J Allergy Clin Immunol. 2006;118:1271–8. doi: 10.1016/j.jaci.2006.08.008.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Casas L, Tischer C, Wouters IM, et al. Early life microbial exposure and fractional exhaled nitric oxide in school-age children: a prospective birth cohort study. Environ Health Glob Access Sci Source. 2013;12:103. doi: 10.1186/1476-069X-12-103.Google Scholar
  44. 44.
    Perzanowski MS, Miller RL, Thorne PS, et al. Endotoxin in inner-city homes: associations with wheeze and eczema in early childhood. J Allergy Clin Immunol. 2006;117:1082–9. doi: 10.1016/j.jaci.2005.12.1348.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gillespie J, Wickens K, Siebers R, et al. Endotoxin exposure, wheezing, and rash in infancy in a New Zealand birth cohort. J Allergy Clin Immunol. 2006;118:1265–70. doi: 10.1016/j.jaci.2006.07.051.PubMedCrossRefGoogle Scholar
  46. 46.
    Iossifova YY, Reponen T, Bernstein DI, et al. House dust (1–3)-beta-D-glucan and wheezing in infants. Allergy. 2007;62:504–13. doi: 10.1111/j.1398-9995.2007.01340.x.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hyvärinen A, Sebastian A, Pekkanen J, et al. Characterizing microbial exposure with ergosterol, 3-hydroxy fatty acids, and viable microbes in house dust: determinants and association with childhood asthma. Arch Environ Occup Health. 2006;61:149–57. doi: 10.3200/AEOH.61.4.149-157.PubMedCrossRefGoogle Scholar
  48. 48.
    van Strien RT, Engel R, Holst O, et al. Microbial exposure of rural school children, as assessed by levels of N-acetyl-muramic acid in mattress dust, and its association with respiratory health. J Allergy Clin Immunol. 2004;113:860–7. doi: 10.1016/j.jaci.2004.01.783.PubMedCrossRefGoogle Scholar
  49. 49.
    Sordillo JE, Hoffman EB, Celedón JC, et al. Multiple microbial exposures in the home may protect against asthma or allergy in childhood. Clin Exp Allergy. 2010;40:902–10. doi: 10.1111/j.1365-2222.2010.03509.x.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.•
    Sharpe RA, Bearman N, Thornton CR, et al. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015;135:110–22. doi: 10.1016/j.jaci.2014.07.002. First and most recent review of cohort and case–control studies on fungal diversity in relation to asthma.PubMedCrossRefGoogle Scholar
  51. 51.
    Vesper SJ, Wymer L, Kennedy S, Grimsley LF. Decreased pulmonary function measured in children exposed to high environmental relative moldiness index homes. Open Respir Med J. 2013;7:83–6. doi: 10.2174/1874306401307010083.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rosenbaum PF, Crawford JA, Hunt A, et al. Environmental relative moldiness index and associations with home characteristics and infant wheeze. J Occup Environ Hyg. 2015;12:29–36. doi: 10.1080/15459624.2014.933958.PubMedCrossRefGoogle Scholar
  53. 53.
    Ege MJ, Mayer M, Normand A-C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364:701–9. doi: 10.1056/NEJMoa1007302.PubMedCrossRefGoogle Scholar
  54. 54.•
    Dannemiller KC, Mendell MJ, Macher JM, et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air. 2014;24:236–47. The first study to explore pediatric asthma in relation to indoor microbes using next generation sequencing.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air. 2007;17:284–96. doi: 10.1111/j.1600-0668.2007.00475.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Tischer C, Chen C-M, Heinrich J. Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Respir J Off J Eur Soc Clin Respir Physiol. 2011;38:812–24. doi: 10.1183/09031936.00184010.Google Scholar
  57. 57.
    Karvonen AM, Hyvärinen A, Korppi M, et al. Moisture damage and asthma: a birth cohort study. Pediatrics. 2015;135:e598–606. doi: 10.1542/peds.2014-1239.PubMedCrossRefGoogle Scholar
  58. 58.
    Karvonen AM, Hyvärinen A, Roponen M, et al. Confirmed moisture damage at home, respiratory symptoms and atopy in early life: a birth-cohort study. Pediatrics. 2009;124:e329–338. doi: 10.1542/peds.2008-1590.PubMedCrossRefGoogle Scholar
  59. 59.
    Godwin C, Batterman S. Indoor air quality in Michigan schools. Indoor Air. 2007;17:109–21. doi: 10.1111/j.1600-0668.2006.00459.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Mendell MJ, Heath GA. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air. 2005;15:27–52. doi: 10.1111/j.1600-0668.2004.00320.x.PubMedCrossRefGoogle Scholar
  61. 61.
    Stranger M, Potgieter-Vermaak SS, Van Grieken R. Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air. 2008;18:454–63. doi: 10.1111/j.1600-0668.2008.00545.x.PubMedCrossRefGoogle Scholar
  62. 62.
    Smedje G, Norbäck D. New ventilation systems at select schools in Sweden—effects on asthma and exposure. Arch Environ Health. 2000;55:18–25. doi: 10.1080/00039890009603380.PubMedCrossRefGoogle Scholar
  63. 63.
    Borràs-Santos A, Jacobs JH, Täubel M, et al. Dampness and mould in schools and respiratory symptoms in children: the HITEA study. Occup Environ Med. 2013;70:681–7. doi: 10.1136/oemed-2012-101286.PubMedCrossRefGoogle Scholar
  64. 64.
    Jacobs JH, Borràs-Santos A, Krop E, et al. Dampness, bacterial and fungal components in dust in primary schools and respiratory health in schoolchildren across Europe. Occup Environ Med. 2014;71:704–12. doi: 10.1136/oemed-2014-102246.PubMedCrossRefGoogle Scholar
  65. 65.
    Smedje G, Norbäck D, Edling C. Asthma among secondary schoolchildren in relation to the school environment. Clin Exp Allergy. 1997;27:1270–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Sahakian NM, White SK, Park J-H, et al. Identification of mold and dampness-associated respiratory morbidity in 2 schools: comparison of questionnaire survey responses to national data. J Sch Health. 2008;78:32–7. doi: 10.1111/j.1746-1561.2007.00263.x.PubMedCrossRefGoogle Scholar
  67. 67.
    Meklin T, Potus T, Pekkanen J, et al. Effects of moisture-damage repairs on microbial exposure and symptoms in schoolchildren. Indoor Air. 2005;15 Suppl 1:40–7. doi: 10.1111/j.1600-0668.2005.00357.x.PubMedCrossRefGoogle Scholar
  68. 68.
    Schlink U, Thiem A, Kohajda T, et al. Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ. 2010;408:3840–51. doi: 10.1016/j.scitotenv.2009.12.002.PubMedCrossRefGoogle Scholar
  69. 69.
    Claeson A-S, Nordin S, Sunesson A-L. Effects on perceived air quality and symptoms of exposure to microbially produced metabolites and compounds emitted from damp building materials. Indoor Air. 2009;19:102–12. doi: 10.1111/j.1600-0668.2008.00566.x.PubMedCrossRefGoogle Scholar
  70. 70.
    Benndorf D, Müller A, Bock K, et al. Identification of spore allergens from the indoor mould Aspergillus versicolor. Allergy. 2008;63:454–60. doi: 10.1111/j.1398-9995.2007.01603.x.PubMedCrossRefGoogle Scholar
  71. 71.
    Peitzsch M, Sulyok M, Täubel M, et al. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Environ Monit JEM. 2012;14:2044–53. doi: 10.1039/c2em30195d.PubMedCrossRefGoogle Scholar
  72. 72.
    Reponen T, Lockey J, Bernstein DI, et al. Infant origins of childhood asthma associated with specific molds. J Allergy Clin Immunol. 2012;130:639–644.e5. doi: 10.1016/j.jaci.2012.05.030.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Cai G-H, Hashim JH, Hashim Z, et al. Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools from Johor Bahru, Malaysia. Pediatr Allergy Immunol. 2011;22:290–7. doi: 10.1111/j.1399-3038.2010.01127.x.PubMedCrossRefGoogle Scholar
  74. 74.
    Kirjavainen PV, Täubel M, Karvonen AM, et al. Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor Air. 2015. doi: 10.1111/ina.12213.Google Scholar
  75. 75.•
    Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air. 2014. doi: 10.1111/ina.12182. A very complete and recent review on indoor fungi, discussing also issues in exposure assessment and summarizes health effects implied by indoor fungal exposure.Google Scholar
  76. 76.
    Nevalainen A, Seuri M. Of microbes and men. Indoor Air. 2005;15 Suppl 9:58–64. doi: 10.1111/j.1600-0668.2005.00344.x.PubMedCrossRefGoogle Scholar
  77. 77.
    Vesper S, McKinstry C, Haugland R, et al. Development of an Environmental Relative Moldiness index for US homes. J Occup Environ Med. 2007;49:829–33. doi: 10.1097/JOM.0b013e3181255e98.PubMedCrossRefGoogle Scholar
  78. 78.
    Méheust D, Gangneux J-P, Reponen T, et al. Correlation between Environmental Relative Moldiness Index (ERMI) values in French dwellings and other measures of fungal contamination. Sci Total Environ. 2012;438:319–24. doi: 10.1016/j.scitotenv.2012.08.085.PubMedCrossRefGoogle Scholar
  79. 79.
    Täubel M, Karvonen AM, Reponen T, et al. Application of the Environmental Relative Moldiness Index in Finland. Appl Environ Microbiol. 2015;82:578–84. doi: 10.1128/AEM.02785-15.PubMedCrossRefGoogle Scholar
  80. 80.
    Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299:1259–60. doi: 10.1136/bmj.299.6710.1259.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.•
    Krämer U, Schmitz R, Ring J, Behrendt H. What can reunification of East and West Germany tell us about the cause of the allergy epidemic? Clin Exp Allergy. 2015;45:94–107. doi: 10.1111/cea.12458. This article shows the effects of the “westernization”.PubMedCrossRefGoogle Scholar
  82. 82.
    Hugg TT, Jaakkola MS, Ruotsalainen R, et al. Exposure to animals and the risk of allergic asthma: a population-based cross-sectional study in Finnish and Russian children. Environ Health. 2008;7:28. doi: 10.1186/1476-069X-7-28.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Genuneit J. Exposure to farming environments in childhood and asthma and wheeze in rural populations: a systematic review with meta-analysis. Pediatr Allergy Immunol. 2012;23:509–18. doi: 10.1111/j.1399-3038.2012.01312.x.PubMedCrossRefGoogle Scholar
  84. 84.
    Schuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349(80):1106–10. doi: 10.1126/science.aac6623.PubMedCrossRefGoogle Scholar
  85. 85.
    Iossifova YY, Reponen T, Ryan PH, et al. Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy, Asthma Immunol Off Publ Am Coll Allergy, Asthma, Immunol. 2009;102:131–7. doi: 10.1016/S1081-1206(10)60243-8.CrossRefGoogle Scholar
  86. 86.
    Rosenbaum PF, Crawford JA, Anagnost SE, et al. Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. J Expo Sci Environ Epidemiol. 2010;20:503–15. doi: 10.1038/jes.2009.27.PubMedCrossRefGoogle Scholar
  87. 87.
    Horick N, Weller E, Milton DK, et al. Home endotoxin exposure and wheeze in infants: correction for bias due to exposure measurement error. Environ Health Perspect. 2006;114:135–40.PubMedGoogle Scholar
  88. 88.•
    Lynch SV, Wood RA, Boushey H, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134:593–601.e12. doi: 10.1016/j.jaci.2014.04.018. A recent key reference in studying respiratory health outcomes in response to indoor microbes and biological agents, also utilizing NGS.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.•
    Ruokolainen L, von Hertzen L, Fyhrquist N, et al. Green areas around homes reduce atopic sensitization in children. Allergy. 2015;70:195–202. doi: 10.1111/all.12545. The results of this paper suggest that the microbial environment is linked to the outdoor landscape.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lovasi GS, Quinn JW, Neckerman KM, et al. Children living in areas with more street trees have lower prevalence of asthma. J Epidemiol Community Health. 2008;62:647–9. doi: 10.1136/jech.2007.071894.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lovasi GS, O’Neil-Dunne JPM, Lu JWT, et al. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth cohort. Environ Health Perspect. 2013;121:494–500. doi: 10.1289/ehp.1205513.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Dadvand P, Villanueva CM, Font-Ribera L, et al. Risks and benefits of green spaces for children: a cross-sectional study of associations with sedentary behavior, obesity, asthma, and allergy. Environ Health Perspect. 2014;122:1329–35. doi: 10.1289/ehp.1308038.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Belmonte J, Vilà M. Atmospheric invasion of non-native pollen in the Mediterranean region. Am J Bot. 2004;91:1243–50. doi: 10.3732/ajb.91.8.1243.PubMedCrossRefGoogle Scholar
  94. 94.
    Cariñanos P, Casares-Porcel M. Urban green zones and related pollen allergy: a review. Some guidelines for designing spaces with low allergy impact. Landsc Urban Plan. 2011;101:205–14. doi: 10.1016/j.landurbplan.2011.03.006.CrossRefGoogle Scholar
  95. 95.
    Frankel M, Timm M, Hansen EW, Madsen AM. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor Air. 2012. doi: 10.1111/j.1600-0668.2012.00770.x.PubMedGoogle Scholar
  96. 96.
    Täubel M, Rintala H, Pitkäranta M, et al. The occupant as a source of house dust bacteria. J Allergy Clin Immunol. 2009;124:834–40.e47. doi: 10.1016/j.jaci.2009.07.045.PubMedCrossRefGoogle Scholar
  97. 97.
    US EPA National Center for Environmental Assessment WDEA and RCG, Moya J Child-specific exposure factors handbook (Final report) 2008.Google Scholar
  98. 98.
    Leppänen HK, Nevalainen A, Vepsäläinen A, et al. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor Air. 2014;24:248–59.PubMedCrossRefGoogle Scholar
  99. 99.
    Leppänen HK, Täubel M, Roponen M, et al. Determinants, reproducibility, and seasonal variation of bacterial cell wall components and viable counts in house dust. Indoor Air. 2015;25:260–72. doi: 10.1111/ina.12141.PubMedCrossRefGoogle Scholar
  100. 100.
    Toivola M, Nevalainen A, Alm S. Personal exposures to particles and microbes in relation to microenvironmental concentrations. Indoor Air. 2004;14:351–9. doi: 10.1111/j.1600-0668.2004.00258.x.PubMedCrossRefGoogle Scholar
  101. 101.
    Milton DK, Johnson DK, Park JH. Environmental endotoxin measurement: interference and sources of variation in the Limulus assay of house dust. Am Ind Hyg Assoc J. 1997;58:861–7. doi: 10.1080/15428119791012199.PubMedCrossRefGoogle Scholar
  102. 102.
    Douwes J, van der Sluis B, Doekes G, et al. Fungal extracellular polysaccharides in house dust as a marker for exposure to fungi: relations with culturable fungi, reported home dampness, and respiratory symptoms. J Allergy Clin Immunol. 1999;103:494–500.PubMedCrossRefGoogle Scholar
  103. 103.
    Miller JD, Young JC. The use of ergosterol to measure exposure to fungal propagules in indoor air. Am Ind Hyg Assoc J. 1997;58:39–43. doi: 10.1080/15428119791013062.PubMedCrossRefGoogle Scholar
  104. 104.
    Douwes J. (1-->3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air. 2005;15:160–9. doi: 10.1111/j.1600-0668.2005.00333.x.PubMedCrossRefGoogle Scholar
  105. 105.
    Sebastian A, Larsson L. Characterization of the microbial community in indoor environments: a chemical-analytical approach. Appl Environ Microbiol. 2003;69:3103–9.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Karvonen AM, Hyvärinen A, Rintala H, et al. Quantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy. 2014;69:1092–101. doi: 10.1111/all.12439.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Haugland RA, Vesper SJ, Wymer LJ. Quantitative measurement of Stachybotrys chartarum conidia using real time detection of PCR products with the TaqMan(TM)fluorogenic probe system. Mol Cell Probes. 1999;13:329–40. doi: 10.1006/mcpr.1999.0258.PubMedCrossRefGoogle Scholar
  108. 108.
    Haugland RA, Vesper S. Method of identifying and quantifying specific fungi and bacteria. 2002.Google Scholar
  109. 109.
    Dunn RR, Fierer N, Henley JB, et al. Home life: factors structuring the bacterial diversity found within and between homes. PLoS ONE. 2013;8, e64133. doi: 10.1371/journal.pone.0064133.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Aimanianda V, Bayry J, Bozza S, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460:1117–21. doi: 10.1038/nature08264.PubMedCrossRefGoogle Scholar
  111. 111.
    Dannemiller KC, Lang-Yona N, Yamamoto N, et al. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos Environ. 2014;84:113–21. doi: 10.1016/j.atmosenv.2013.11.036.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lidia Casas
    • 1
    • 2
    • 3
    • 4
    Email author
  • Christina Tischer
    • 2
    • 3
    • 4
  • Martin Täubel
    • 5
  1. 1.Department of Public Health and Primary CareCentre for Environment and Health, KU LeuvenLeuvenBelgium
  2. 2.ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)BarcelonaSpain
  3. 3.University Pompeu Fabra (UPF)BarcelonaSpain
  4. 4.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  5. 5.Living Environment and Health UnitNational Institute for Health and WelfareKuopioFinland

Personalised recommendations