Current Environmental Health Reports

, Volume 3, Issue 1, pp 1–12 | Cite as

Arsenic Exposure and Immunotoxicity: a Review Including the Possible Influence of Age and Sex

  • Daniele Ferrario
  • Laura GribaldoEmail author
  • Thomas Hartung
Susceptibility Factors in Environmental Health (B Ritz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Susceptibility Factors in Environmental Health


Increasing evidence suggests that inorganic arsenic, a major environmental pollutant, exerts immunosuppressive effects in epidemiological, in vitro, and animal models. The mechanisms, however, remain unclear, and little is known about variation in susceptibilities due to age and sex. We performed a review of the experimental and epidemiologic evidence on the association of arsenic exposure and immune diseases. The majority of the studies described arsenic as a potent immunosuppressive compound, though others have reported an increase in allergy and autoimmune diseases, suggesting that arsenic may also act as an immune system stimulator, depending on the dose or timing of exposure. Limited information, due to either the high concentrations of arsenic used in in vitro studies or the use of non-human data for predicting human risks, is available from experimental studies. Moreover, although there is emerging evidence that health effects of arsenic manifest differently between men and women, we found limited information on sex differences on the immunotoxic effects of arsenic. In conclusion, preliminary data show that chronic early-life exposure to arsenic might impair immune responses, potentially leading to increased risk of infections and inflammatory-like diseases during childhood and in adulthood. Further investigation to evaluate effects of arsenic exposure on the developing immune system of both sexes, particularly in human cells and using concentrations relevant to human exposure, should be a research priority.


Arsenic Immune system Immunotoxicity Sex Developmental immunotoxicity Age 


Compliance with Ethical Standards

Conflict of Interest

Daniele Ferrario, Laura Gribaldo, and Thomas Hartung declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article is a review of the literature and all the human and animal studies presented have been previously published in the peer review literature.


  1. 1.
    National Research Council. Arsenic in drinking water. Washington, D.C: National Academy Press; 1999.Google Scholar
  2. 2.
    National Research Council. Arsenic in drinking water. Update. 0-309-07629-3. Washington, D.C: National Academy Press; 2001.Google Scholar
  3. 3.
    WHO. Arsenic and arsenic compounds. Environmental health criteria 224. Geneva: World Health Organization; 2001.Google Scholar
  4. 4.
    U.S. Department of Health and Human Services, Public Health Service, Georgia U.S. U.S. agency for toxic substances and disease registry. Toxicological Profile for Arsenic. 2007.Google Scholar
  5. 5.
    Basu A, Mahata J, Gupta S, Giri AK. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res. 2001;488:171–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown KG, Ross GL, American Council on Science and Health. Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regul Toxicol Pharmacol. 2002;36:162–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D, Chanda B. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst. 1995;120:917–24.PubMedCrossRefGoogle Scholar
  8. 8.
    IARC. A review of human carcinogens: arsenic, metals, fibres, and dusts, vol. 100C. Geneva, Switzerland: World Health Organization; 2012.Google Scholar
  9. 9.
    Vahter M, Concha G, Nermell B, Nilsson R, Dulout F, Natarajan AT. A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol. 1995;293:455–62.PubMedCrossRefGoogle Scholar
  10. 10.
    Aposhian HV, Gurzau ES, Le XC, Gurzau A, Healy SM, Lu X, et al. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem Res Toxicol. 2000;13:693–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui valley, Sonora, Mexico. Environ Res. 2004;96:119–26.PubMedCrossRefGoogle Scholar
  12. 12.
    IARC. Some drinking water disinfectants and contaminants, including arsenic. IARC monograph on the evaluation of carcinogenic risks to humans, vol. 84. Lyon: International Agency for Research on Cancer; 2004. p. 209–14.Google Scholar
  13. 13.
    Ahmed S, Mahabbat-e Khoda S, Rekha RS, Gardner RM, Ameer SS, Moore S, et al. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect. 2011;119(2):258–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Banerjee N, Banerjee S, Sen R, Bandyopadhyay A, Sarma N, Majumder P, et al. Chronic arsenic exposure impairs macrophage functions in the exposed individuals. J Clin Immunol. 2009;29:582–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Vahter M. Mechanisms of arsenic biotransformation. Toxicology. 2002;181–182:211–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindberg AL, Rahman M, Persson LA, Vahter M. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Toxicol Appl Pharmacol. 2008. doi: 10.1016/j.taap.2008.02.001.PubMedGoogle Scholar
  17. 17.
    Chung CJ, Huang CJ, Pu YS, Su CT, Huang YK, Chen YT, et al. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol Appl Pharmacol. 2008;226:14–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Dangleben NL, Skibola CF, Smith MT. Arsenic immunotoxicity: a review. Environ Heal. 2013. doi: 10.1186/1476-069X-12-73.Google Scholar
  19. 19.
    Selgrade MK. Immunotoxicity: the risk is real. Toxicol Sci. 2007;100:328–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol. 2008. doi: 10.1111/j.1742-7843.2007.00168.x.PubMedGoogle Scholar
  21. 21.
    Hisanaga A. Chronic toxicity of arsenous acid in rats with special reference to the dose–response. Fukuoka Igaku Zasshi. 1982;73:46–63.PubMedGoogle Scholar
  22. 22.
    Patterson R, Vega L, Trouba K, Bortner C, Germolec D. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice. Toxicol Appl Pharmacol. 2004;198:434–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Soto-Peña GA, Luna AL, Acosta-Saavedra L, Conde P, López-Carrillo L, Cebrián ME, et al. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J. 2006;20(6):779–81.PubMedGoogle Scholar
  24. 24.
    Burchiel SW, Mitchell LA, Lauer FT, Sun X, McDonald JD, Hudson LG, et al. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure. Toxicol Appl Pharmacol. 2009;241(3):253–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Nain S, Smits JE. Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol. 2012. doi: 10.1002/tox.20635.PubMedGoogle Scholar
  26. 26.
    Li Q, Lauer FT, Liu KJ, Hudson LG, Burchiel SW. Low-dose synergistic immunosuppression of T-dependent antibody responses by polycyclic aromatic hydrocarbons and arsenic in C57BL/6J murine spleen cells. Toxicol Appl Pharmacol. 2010;245(3):344–51.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hochstenbach K, van Leeuwen DM, Gmuender H, Gottschalk RW, Stølevik SB, Nygaard UC, et al. Toxicogenomic profiles in relation to maternal immunotoxic exposure and immune functionality in newborns. Toxicol Sci. 2012. doi: 10.1093/toxsci/kfs214.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Luebke RW, Chen DH, Dietert R, Yang Y, King M, Luster MI, et al. The comparative immunotoxicity of five selected compounds following developmental or adult exposure. J Toxicol Environ Health B Crit Rev. 2006;9:1–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Kadovaki K. Studies on the arsenic contents in organ-tissue of the normal Japanese. Osaka City Med J. 1960;9:2083–99.Google Scholar
  30. 30.
    Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci. 1998;44(2):185–90.PubMedCrossRefGoogle Scholar
  31. 31.
    Dietert RR, Piepenbrink MS. Perinatal immunotoxicity: why adult exposure assessment fails to predict risk. Environ Health Perspect. 2006;114:477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Vahter M, Akesson A, Lidén C, Ceccatelli S, Berglund M. Gender differences in the disposition and toxicity of metals. Environ Res. 2007;104:85–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA. Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol. 2007;165(12):1389–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S, et al. Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol. 2009;169(3):304–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrario D, Collotta A, Carfi M, Bowe G, Vahter M, Hartung T, et al. Arsenic induces telomerase expression and maintains telomere length in human cord blood cells. Toxicology. 2009;260:132–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Tseng WP. Effects and dose–response relationships of skin cancer and Blackfoot disease with arsenic. Environ Health Perspect. 1977;19:109–19.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Guha Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol. 1998;27:871–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen YC, Su HJ, Guo YL, Hsueh YM, Smith TJ, Ryan LM, et al. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control. 2003;14:303–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Rahman M, Vahter M, Sohel N, Yunus M, Wahed MA, Streatfield PK, et al. Arsenic exposure and age and sex-specific risk for skin lesions: a population-based case-referent study in Bangladesh. Environ Health Perspect. 2006;114(12):1847–52.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Thornton MJ. Oestrogen functions in skin and skin appendages. Expert Opin Ther Targets. 2005;9:617–29.PubMedCrossRefGoogle Scholar
  41. 41.
    Lindberg AL, Ekström EC, Nermell B, Rahman M, Lönnerdal B, Persson LA, et al. Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res. 2008;106(1):110–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Waalkes MP, Liu J. Early-life arsenic exposure: methylation capacity and beyond. Environ Health Perspect. 2008. doi: 10.1289/ehp.11276.Google Scholar
  43. 43.
    Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H, Minh TB, et al. Genetic polymorphisms in AS3MT and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol Appl Pharmacol. 2009;236:131–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Tseng CH. A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol. 2009. doi: 10.1016/j.taap.2008.PubMedGoogle Scholar
  45. 45.
    Watanabe C, Inaoka T, Kadono T, Nagano M, Nakamura S, Ushijima K, et al. Males in rural Bangladeshi communities are more susceptible to chronic arsenic poisoning than females: analyses based on urinary arsenic. Environ Health Perspect. 2001;109:1265–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose–response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989;130:1123–32.PubMedGoogle Scholar
  47. 47.
    Steinmaus C, Yuan Y, Kalman D, Atallah R, Smith AH. Intraindividual variability in arsenic methylation in a U.S. population. Cancer Epidemiol Biomarkers Prev. 2005;14:919–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Chiu HF, Ho SC, Wang LY, Wu TN, Yang CY. Does arsenic exposure increase the risk for liver cancer? J Toxicol Environ Health. 2004;A67:1491–500.CrossRefGoogle Scholar
  49. 49.
    Chiu HF, Chang CC, Tsai SS, Yang CY. Does arsenic exposure increase the risk for diabetes mellitus? J Occup Environ Med. 2006;48:63–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang CY, Chiu HF, Chang CC, Ho SC, Wu TN. Bladder cancer mortality reduction after installation of a tap-water supply system in an arsenious-endemic area in southwestern Taiwan. Environ Res. 2005;98:127–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Sung TC, Huang JW, Guo HR. Association between arsenic exposure and diabetes: a meta-analysis. Biomed Res Int. 2015. doi: 10.1155/2015/368087.Google Scholar
  52. 52.
    Waalkes MP, Ward JM, Liu J, Diwan BA. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol. 2003;186:7–17.PubMedCrossRefGoogle Scholar
  53. 53.
    Vega L, de Oca Montes P, Saavedra R, Ostrosky-Wegman P. Helper T cell subpopulations from women are more susceptible to the toxic effect of sodium arsenite in vitro. Toxicology. 2004;199(2–3):121–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Waalkes MP, Liu J, Ward JM, Powell DA, Diwan BA. Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res. 2006;66(3):1337–45.PubMedCrossRefGoogle Scholar
  55. 55.
    Ferrario D, Croera C, Brustio R, Collotta A, Bowe G, Vahter M, et al. Toxicity of inorganic arsenic and its metabolites on haematopoietic progenitors “in vitro”: comparison between species and sexes. Toxicology. 2008;249:102–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Vahter M. Effects of arsenic on maternal and fetal health. Annu Rev Nutr. 2009;29:381–99.PubMedCrossRefGoogle Scholar
  57. 57.
    Hutchinson LM, Trinh BM, Palmer RK, Preziosi CA, Pelletier JH, Nelson HM, et al. Inorganic arsenite inhibits IgE receptor-mediated degranulation of mast cells. J Appl Toxicol. 2011;31(3):231–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Westhoff DD, Samaha RJ, Barnes Jr A. Arsenic intoxication as a cause of megaloblastic anemia. Blood. 1975;45:241–6.PubMedGoogle Scholar
  59. 59.
    Feussner JR, Shelburne JD, Bredehoeft S, Cohen HJ. Arsenic-induced bone marrow toxicity: ultrastructural and electron-probe analysis. Blood. 1979;53:820–7.PubMedGoogle Scholar
  60. 60.
    Frenkel O, Shani E, Ben-Bassat I, Brok-Simoni F, Rozenfeld-Granot G, Kajakaro G, et al. Activated macrophages for treating skin ulceration: gene expression in human monocytes after hypo-osmotic shock. Clin Exp Immunol. 2002;128:59–66.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Webb DR, Wilson SE, Carter DE. Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. Toxicol Appl Pharmacol. 1986;82:405–16.PubMedCrossRefGoogle Scholar
  62. 62.
    Harrison MT, McCoy KL. Immunosuppression by arsenic: a comparison of Cathepsin L inhibition and apoptosis. Int Immunopharmacol. 2001;1:647–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Rocha-Amador DO, Calderon J, Carrizales L, Costilla-Salazar R, Perez-Maldonado IN. Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environ Toxicol Pharmacol. 2011;32:399–405.PubMedCrossRefGoogle Scholar
  64. 64.
    Andrew AS, Jewell DA, Mason RA, Whitfield ML, Moore JH, Karagas MR. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008;116:524–31. doi: 10.1289/ehp.10861.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Salgado-Bustamante M, Ortiz-Perez MD, Calderon-Aranda E, Estrada-Capetillo L, Nino-Moreno P, Gonzalez-Amaro R, et al. Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. Sci Total Environ. 2010. doi: 10.1016/j.scitotenv.2009.11.016.PubMedGoogle Scholar
  66. 66.
    Ostrosky-Wegman P, Gonsebatt ME, Montero R, Vega L, Barba H, Espinosa J, et al. Lymphocyte proliferation kinetics and genotoxic findings in a pilot study on individuals chronically exposed to arsenic in Mexico. Mutat Res. 1991;250:477–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Gonsebatt ME, Vega L, Montero R, Garcia-Vargas G, Del Razo LM, Albores A, et al. Lymphocyte replicating ability in individuals exposed to arsenic via drinking water. Mutat Res. 1994;313:293–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Biswas R, Ghosh P, Banerjee N, Das JK, Sau T, Banerjee A, et al. Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol. 2008;27:381–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. 2003;111:1429–38.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Islam LN, Nabi AH, Rahman MM, Zahid MS. Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. J Environ Sci Health Part A: Tox Hazard Subst Environ Eng. 2007;42:1807–14.CrossRefGoogle Scholar
  71. 71.
    Smith AH, Marshall G, Yuan Y, Liaw J, Ferreccio C, Steinmaus C. Evidence from Chile that arsenic in drinking water may increase mortality from pulmonary tuberculosis. Am J Epidemiol. 2011;173:414–20.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mazumder DN, Steinmaus C, Bhattacharya P, Von Ehrenstein OS, Ghosh N, Gotway M, et al. Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology. 2005;16:760–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114:1293–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    King P, Holdsworth S, Freezer N, Holmes P. Bronchiectasis. Intern Med J. 2006;36:729–37.PubMedCrossRefGoogle Scholar
  75. 75.
    Rahman A, Vahter M, Ekstrom EC, Persson LA. Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect. 2011;119:719–24.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liao WT, Yu CL, Lan CC, Lee CH, Chang CS, Chang LW, et al. Differential effects of arsenic on cutaneous and systemic immunity: focusing on CD4+ cell apoptosis in patients with arsenic-induced Bowen's disease. Carcinogenesis. 2009. doi: 10.1093/carcin/bgp095.PubMedCentralGoogle Scholar
  77. 77.
    Rosales-Castillo JA, Acosta-Saavedra LC, Torres R, Ochoa-Fierro J, Borja-Aburto VH, Lopez-Carrillo L, et al. Arsenic exposure and human papillomavirus response in non-melanoma skin cancer Mexican patients: a pilot study. Int Arch Occup Environ Health. 2004;77:418–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Luna AL, Acosta-Saavedra LC, Lopez-Carrillo L, Conde P, Vera E, De Vizcaya-Ruiz A, et al. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol Appl Pharmacol. 2010;245:244–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Escobar J, Varela-Nallar L, Coddou C, Nelson P, Maisey K, Valdés D, et al. Oxidative damage in lymphocytes of copper smelter workers correlated to higher levels of excreted arsenic. Mediat Inflamm. 2010;2010:403830.CrossRefGoogle Scholar
  80. 80.
    Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect. 2009;117:254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lin SM, Yang MH. Arsenic, selenium, and zinc in patients with Blackfoot disease. Biol Trace Elem Res. 1988;15:213–21.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of Blackfoot disease. Arteriosclerosis. 1988;8:452–60.PubMedCrossRefGoogle Scholar
  83. 83.
    McMurray DN, Bartow RA, Mintzer CL, Hernandez-Frontera E. Micronutrient status and immune function in tuberculosis. Ann N Y Acad Sci. 1990;587:59–69.PubMedCrossRefGoogle Scholar
  84. 84.
    Vega L, Ostrosky-Wegman P, Fortoul TI, Díaz C, Madrid V, Saavedra R. Sodium arsenite reduces proliferation of human activated T-cells by inhibition of the secretion of interleukin-2. Immunopharmacol Immunotoxicol. 1999;21:203–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Von Ehrenstein OS, Mazumder DN, Yuan Y, Samanta S, Balmes J, Sil A, et al. Decrements in lung function related to arsenic in drinking water in West Bengal, India. Am J Epidemiol. 2005;162:533–41.CrossRefGoogle Scholar
  86. 86.
    Rahman A, Persson LA, Nermell B, El Arifeen S, Ekstrom EC, Smith AH, et al. Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology. 2010;21:797–804.PubMedCrossRefGoogle Scholar
  87. 87.
    Raqib R, Ahmed S, Sultana R, Wagatsuma Y, Mondal D, Hoque AM, et al. Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett. 2009;185:197–202.PubMedCrossRefGoogle Scholar
  88. 88.
    Schulz H, Nagymajtenyi L, Institoris L, Papp A, Siroki O. A study on behavioral, neurotoxicological, and immunotoxicological effects of subchronic arsenic treatment in rats. J Toxicol Environ Health. 2002;65:1181–93.CrossRefGoogle Scholar
  89. 89.
    Andrew AS, Bernardo V, Warnke LA, Davey JC, Hampton T, Mason RA, et al. Exposure to arsenic at levels found in U.S. drinking water modifies expression in the mouse lung. Toxicol Sci. 2007;100:75–87.PubMedCrossRefGoogle Scholar
  90. 90.
    Soto-Peña GA, Vega L. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells. Toxicol Appl Pharmacol. 2008;230:216–26.PubMedCrossRefGoogle Scholar
  91. 91.
    Cimino-Reale G, Ferrario D, Casati B, Brustio R, Diodovich C, Collotta A, et al. Combined in utero and juvenile exposure of mice to arsenate and atrazine in drinking water modulates gene expression and clonogenicity of myeloid progenitors. Toxicol Lett. 2008;180(1):59–66.PubMedCrossRefGoogle Scholar
  92. 92.
    Kozul CD, Ely KH, Enelow RI, Hamilton JW. Low-dose arsenic compromises the immune response to influenza A infection in vivo. Environ Health Perspect. 2009;117:1441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kozul CD, Hampton TH, Davey JC, Gosse JA, Nomikos AP, Eisenhauer PL, et al. Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environ Health Perspect. 2009;117:1108–15.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lantz RC, Parliman G, Chen GJ, Carter DE. Effect of arsenic exposure on alveolar macrophage function. I. Effect of soluble as(III) and as(V). Environ Res. 1994;67:183–95.PubMedCrossRefGoogle Scholar
  95. 95.
    Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999;93:268–77.PubMedGoogle Scholar
  96. 96.
    Ghosh D, Bhattacharya S, Mazumder S. Perturbations in the catfish immune responses by arsenic: organ and cell specific effects. Comp Biochem Physiol C Toxicol Pharmacol. 2006;143:455–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Sikorski EE, Burns LA, Stern ML, Luster MI, Munson AE. Splenic cell targets in gallium arsenide-induced suppression of the primary antibody response. Toxicol Appl Pharmacol. 1991;110:129–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Byron WR, Bierbower GW, Brouwer JB, Hansen WH. Pathologic changes in rats and dogs from two-year feeding of sodium arsenite or sodium arsenate. Toxicol Appl Pharmacol. 1967;10:132–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Mahaffey KR, Fowler BA. Effects of concurrent administration of lead, cadmium, and arsenic in the rat. Environ Health Perspect. 1977;19:165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Blakely BR, Sisodia CS, Mukkur TK. The effect of methylmercury, tetraethyl lead and sodium arsenite on the humoral immune response in mice. Toxicol Appl Pharmacol. 1980;52:245–54.CrossRefGoogle Scholar
  101. 101.
    Cho Y, Ahn KH, Back MJ, Choi JM, Ji JE, Won JH, et al. Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch Pharm Res. 2012;35(2):375–82.PubMedCrossRefGoogle Scholar
  102. 102.
    Germolec DR, Spalding J, Boorman GA, Wilmer JL, Yoshida T, Simeonova PP, et al. Arsenic can mediate skin neoplasia by chronic stimulation of keratinocyte-derived growth factors. Mutat Res. 1997;386:209–18.PubMedCrossRefGoogle Scholar
  103. 103.
    Yih LH, Peck K, Lee TC. Changes in gene expression profiles of human fibroblasts in response to sodium arsenite treatment. Carcinogenesis. 2002;23:867–76.PubMedCrossRefGoogle Scholar
  104. 104.
    Nayak AS, Lage CR, Kim CH. Effects of low concentrations of arsenic on the innate immune system of the zebrafish (Danio rerio). Toxicol Sci. 2007;98:118–24.PubMedCrossRefGoogle Scholar
  105. 105.
    Sakurai T, Ohta T, Tomita N, Kojima C, Hariva Y, Mizukami A, et al. Evaluation of immunotoxic and immunodisruptive effects of inorganic arsenite on human monocytes/macrophages. Int Immunopharmacol. 2006;6:304–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Sakurai T, Ohta T, Fujiwara K. Inorganic arsenite alters macrophage generation from human peripheral blood monocytes. Toxicol Appl Pharmacol. 2005;203:145–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Gonsebatt ME, Vega L, Herrera LA, Montero R, Rojas E, Cebrián ME, et al. Inorganic arsenic effects on human lymphocyte stimulation and proliferation. Mutat Res. 1992;283:91–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Meng Z, Meng N. Effects of inorganic arsenicals on DNA synthesis in unsensitized human blood lymphocytes in vitro. Biol Trace Elem Res. 1994;42:201–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Morzadec C, Bouezzedine F, Macoch M, Fardel O, Vernhet L. Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology. 2012;300:46–56.PubMedCrossRefGoogle Scholar
  110. 110.
    Conde P, Acosta-Saavedra LC, Goytia-Acevedo RC, Calderon-Aranda ES. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells. Arch Toxicol. 2007;81:251–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Lemarie A, Morzadec C, Mérino D, Micheau O, Fardel O, Vernhet L. Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation. J Pharmacol Exp Ther. 2006;316:304–14.PubMedCrossRefGoogle Scholar
  112. 112.
    Lemarie A, Morzadec C, Bourdonnay E, Fardel O, Vernhet L. Human macrophages constitute targets for immunotoxic inorganic arsenic. J Immunol. 2006;177:3019–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Wetzler M, Brady MT, Tracy E, Li ZR, Donohue KA, O'Loughlin KL, et al. Arsenic trioxide affects signal transducer and activator of transcription proteins through alteration of protein tyrosine kinase phosphorylation. Clin Cancer Res. 2006;12:6817–25.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Cooper KL, Liu KJ, Hudson LG. Contributions of reactive oxygen species and mitogen-activated protein kinase signaling in arsenite-stimulated hemeoxygenase-1 production. Toxicol Appl Pharmacol. 2007;218:119–27.PubMedCrossRefGoogle Scholar
  115. 115.
    Martin-Chouly C, Morzadec C, Bonvalet M, Galibert MD, Fardel O, Vernhet L. Inorganic arsenic alters expression of immune and stress response genes in activated primary human T lymphocytes. Mol Immunol. 2011. doi: 10.1016/j.molimm.2011.01.005.PubMedGoogle Scholar
  116. 116.
    Sherwood CL, Lantz RC, Burgess JL, Boitano S. Arsenic alters ATP-dependent Ca2+ signaling in human airway epithelial cell wound response. Toxicol Sci. 2011;121:191–206.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Reberšek K, Žontar DM, Černelč P, Podgornik H. Selective apoptosis of multiple myeloma cells in primary samples induced by arsenic trioxide. Hematology. 2014;19:346–51. doi: 10.1179/1607845413Y.0000000134.PubMedCrossRefGoogle Scholar
  118. 118.
    Binet F, Antoine F, Girard D. Interaction between arsenic trioxide and human primary cells: emphasis on human cells of myeloid origin. Inflamm Allergy Drug Targets. 2009;8:21–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Binet F, Cavalli H, Moisan E, Girard D. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis. Br J Haematol. 2006;132(3):349–58.PubMedCrossRefGoogle Scholar
  120. 120.
    Yoshida T, Shimamura T, Shigeta S. Immunological effects of arsenic compounds on mouse spleen cells in vitro. Tokai J Exp Clin Med. 1986;11:353–9.PubMedGoogle Scholar
  121. 121.
    Bourdonnay E, Morzadec C, Fardel O, Vernhet L. Redox-sensitive regulation of gene expression in human primary macrophages exposed to inorganic arsenic. J Cell Biochem. 2009. doi: 10.1002/jcb.22155.PubMedGoogle Scholar
  122. 122.
    Vernhet L, Morzadec C, van Grevenynghe J, Bareau B, Corolleur M, Fest T, et al. Inorganic arsenic induces necrosis of human CD34-positive haematopoietic stem cells. Environ Toxicol. 2008. doi: 10.1002/tox.20334.PubMedGoogle Scholar
  123. 123.
    Meng ZQ, Meng NY. Effects of arsenic on blast transformation and DNA synthesis of human blood lymphocytes. Chemosphere. 2000;41:115–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Bolt AM, Douglas RM, Klimecki WT. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes. Toxicol Lett. 2010;199(2):153–9.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics. 2011;6(7):828–37.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Huang YK, Huang YL, Hsueh YM, Yang MH, Wu MM, Chen SY, et al. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control. 2008;19:829–39.PubMedCrossRefGoogle Scholar
  127. 127.
    Price HV, Salaman JR, Laurence KM, Langmaid H. Immunosuppressive drugs and the foetus. Transplantation. 1976;21:294–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Luster MI, Johnson VJ, Yucesoy B, Simeonova PP. Biomarkers to assess potential developmental immunotoxicity in children. Toxicol Appl Pharmacol. 2005;206:229–36.PubMedCrossRefGoogle Scholar
  129. 129.
    Tendron A, Gouyon JB, Decramer S. In utero exposure to immunosuppressive drugs: experimental and clinical studies. Pediatr Nephrol. 2002;17:121–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Holladay SD, Smith BJ. Fetal hematopoietic alterations after maternal exposure to benzo[a]pyrene: a cytometric evaluation. J Toxicol Environ Health. 1994;42:259–73.PubMedCrossRefGoogle Scholar
  131. 131.
    Strickland FM, Richardson BC. Epigenetics in human autoimmunity. Epigenetics in autoimmunity—DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity. 2008;41:278–86.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lee CH, Liao WT, Yu HS. Aberrant immune responses in arsenical skin cancers. Kaohsiung J Med Sci. 2011. doi: 10.1016/j.kjms.2011.05.007.Google Scholar
  133. 133.
    Tseng CH. The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Appl Pharmacol. 2004;197:67–83.PubMedCrossRefGoogle Scholar
  134. 134.
    Olivas-Calderón E, Recio-Vega R, Gandolfi AJ, Lantz RC, González-Cortes T, Gonzalez-De Alba C, et al. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicol Appl Pharmacol. 2015;287:161–7. doi: 10.1016/j.taap.2015.06.001.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH. Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 1994;16:184–209.PubMedGoogle Scholar
  136. 136.
    Ahmed S, Moore SE, Kippler M, Gardner R, Hawlader MD, Wagatsuma Y, et al. Arsenic exposure and cell-mediated immunity in pre-school children in rural Bangladesh. Toxicol Sci. 2014;141:166–75. doi: 10.1093/toxsci/kfu113.PubMedCrossRefGoogle Scholar
  137. 137.
    Wiger K, Høiby EA, Wathne KO. Infections in immunosuppressed children. Tidsskr Nor Laegeforen. 2005;125:1168–72.PubMedGoogle Scholar
  138. 138.
    Andres A, Toso C, Morel P, Bosco D, Bucher P, Oberholzer J, et al. Macrophage depletion prolongs discordant but not concordant islet xenograft survival. Transplantation. 2005;79:543–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Vahter M, Gochfeld M, Casati B, Thiruchelvam M, Falk-Filippson A, Kavlock R, et al. Implications of gender differences for human health risk assessment and toxicology. Environ Res. 2007;104:70–84.PubMedCrossRefGoogle Scholar
  140. 140.
    Gennari A, Ban M, Braun A, Casati S, Corsini E, Dastych J, et al. The use of in vitro systems for evaluating immunotoxicity: the report and recommendations of an ECVAM workshop. J Immunotox. 2005;2:61–83.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Daniele Ferrario
    • 1
  • Laura Gribaldo
    • 2
    Email author
  • Thomas Hartung
    • 3
    • 4
  1. 1.VareseItaly
  2. 2.European Commission, DG JRC, Chemical Assessment and Testing (CAT) UnitInstitute for Health and Consumer ProtectionIspraItaly
  3. 3.CAAT, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  4. 4.CAAT-EuropeUniversity of KonstanzKonstanzGermany

Personalised recommendations