FSIS: a novel fluid–solid interaction solver for fracturing and fragmenting solids


Transient dynamics of fracturing media has received significant attention in recent years, and a number of simulation approaches have been developed. One of these is the combined finite-discrete element method (FDEM). FDEM produces complex fracture and fragmentation patterns in processes such as blast loads, blasting, impact, mining, and oil exploration. To address a wide range of multi-physics problems, numerous approaches have been undertaken to introduce fluid into the FDEM transient dynamics, ranging from application-specific gas models to more advanced hydraulic fracture processes and biomedical applications. None of these have been satisfactory in terms of robustness, accuracy or computational efficiency. In this work, a completely new explicit fluid solver has been tailor-made and fully integrated (as opposed to coupled) into the combined finite-discrete element method. The solver addresses transient pressure wave propagation in fluid, fluid viscosity, equation of state for the fluid, energy transport, momentum transport, and interaction with the fracturing solid domains, which is done through a novel immersed boundary approach. The solver is based on the governing equations being resolved using different control volume schemes, with discretization errors of either third, second, or first order. The solver is fully explicit and conditionally stable with a time step that is synchronized with the FDEM’s time step.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27


  1. 1.

    Barthès-Biesel D (1980) Motion of a spherical microcapsule freely suspended in a linear shear flow. J Fluid Mech 100(4):831–853.

  2. 2.

    Sigrist J-F (2015) Fluid structure interaction. Wiley, Hoboken. ISBN 978-1-119-95227-5

  3. 3.

    Kim W, Choi H (2019) Immersed boundary methods for fluid–structure interaction: a review. Int J Heat Fluid Flow 75:301–309

  4. 4.

    Hirt CW, Amsden AA, Cook JL (1974) An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J Comput Phys 14:227–253

  5. 5.

    Souli M, Benson DJ (2010) Arbitrary Lagrangian–Eulerian fluid–structure interaction: numerical simulation. Wiley, Hoboken

  6. 6.

    Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

  7. 7.

    Wang M, Feng YT, Owen DRJ, Qu TM (2019) A novel algorithm of immersed moving boundary scheme for fluid-particle interactions in DEM–LBM. Comput Methods Appl Mech Eng 346:109–125

  8. 8.

    Frei S, Colciago C, Holm B, Richter T, Wick T, Yang H, Basting S, Birken P, van Brummelen EH, Canic S (2017) Fluid–structure interaction: modelling, adaptive discretisations and solvers. Radon series on computational and applied mathematics series, vol 20. De Gruyter, Berlin (ProQuest Ebook Central)

  9. 9.

    Wick T (2016) Coupling fluid–structure interaction with phase-field fracture. J Comput Phys 327:67–96

  10. 10.

    Talemi RH, Brown S, Martynov S, Mahgerefteh H (2016) Hybrid fluid–structure interaction modelling of dynamic brittle fracture in steel pipelines transporting CO2 streams. Int J Greenh Gas Control 54(2):702–715

  11. 11.

    Sudhakar Y, Wall WA (2018) A strongly coupled partitioned approach for fluid–structure–fracture interaction. Int J Numer Methods Fluids 87:90–108.

  12. 12.

    Chau VT, Bazant ZP, Su Y (2016) Growth model for large branched three-dimensional hydraulic crack system in gas and oil shale. Philos Trans R Soc A 374(2078):20150418

  13. 13.

    Rahimi-Aghdam S, Chau VT, Lee H, Nguyen H, Li W, Karra S, Rougier E, Viswanathan H, Srinivasan G, Bazant ZP (2019) Branching of hydraulic cracks enabling permeability of gas or oil shale with closed natural fractures. Proc Natl Acad Sci 116(5):1532

  14. 14.

    Munjiza A (2004) The combined finite-discrete element method. Wiley, London. ISBN 978-0-470-84199-0

  15. 15.

    Munjiza A, Knight EE, Rougier E (2011) Computational mechanics of discontinua. Wiley, London. ISBN 978-0-470-97080-5

  16. 16.

    Munjiza A, Rougier E, Knight EE (2015) Large strain finite element method: a practical course. Wiley, London. ISBN 978-1-118-40530-7

  17. 17.

    Rougier E, Knight EE, Munjiza A (2012) Fluid driven rock deformation via the combined FEM/DEM methodology. In: Proceedings of the 46th US rock mechanics/geomechanics symposium. American Rock Mechanics Association

  18. 18.

    Rougier E, Knight EE, Munjiza A (2019) Integrated solver for fluid driven fracture and fragmentation. US Patent #US10275551B2. Patent filed 07/24/2014 (#US20150032427A1)

  19. 19.

    Lei Z, Rougier E, Munjiza A, Viswanathan H, Knight EE (2019) Simulation of discrete cracks driven by nearly incompressible fluid via 2D combined finite-discrete element method. Int J Numer Anal Meth Geomech.

  20. 20.

    Yan C, Zheng H (2016) A two-dimensional coupled hydro-mechanical finite-discrete model considering porous media flow for simulating hydraulic fracturing. Int J Rock Mech Min Sci 88:115–128

  21. 21.

    Yan C, Zheng H (2017) FDEM-flow3D: a 3D hydro-mechanical coupled model considering the pore seepage of rock matrix for simulating three-dimensional hydraulic fracturing. Comput Geotech 81:212–228

  22. 22.

    Lisjak A, Kaifosh P, Tatone B, Mahabadi O, Grasselli G (2017) A 2D, fully-coupled, hydro-mechanical, FDEM formulation for modelling fracturing processes in discontinuous, porous rock masses. Comput Geotech 81:1–18

  23. 23.

    Von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237

  24. 24.

    Reisner J, Serencsa J, Shkoller S (2013) A space–time smooth artificial viscosity method for nonlinear conservation laws. J Comput Phys 235:912–933

  25. 25.

    Landau LD, Lifshitz EM (1987) Fluid mechanics. Volume 6 if course of theoretical physics second english edition, revised. Pergamon Press, Oxford

  26. 26.

    Munjiza A, Knight EE, Rougier E (2011) Computational mechanics of discontinua. Wiley series in computational mechanics. Wiley, Hoboken. ISBN 978-0-470-97080-5

  27. 27.

    Watson I, Burnett AD (1995) Hydrology: an environmental approach. CRC Press, Boca Raton. ISBN 978-0-203-75144-2

  28. 28.

    Rathakrishnan E (2019) Applied gas dynamics, 2nd edn. Wiley, Hoboken. ISBN 978-1-119-50045-2

  29. 29.

    Erturk E (2009) Discussions on driven cavity flow. Int J Numer Meth Fluids 60:275–294

  30. 30.

    Botella O, Peyret R (1998) Benchmark spectral results on the lid-driven cavity flow. Comput Fluids 27(4):421–433

  31. 31.

    von Kármán T (1963) Aerodynamics. McGraw-Hill, New York. ISBN 978-0-07-067602-2

  32. 32.

    Engelman MS, Jamnia M-A (1990) Transient flow past a circular cylinder: a benchmark solution. Int J Numer Methods Fluids 11:985–1000

  33. 33.

    Roshko A (1954) On the development of turbulent wakes from vortex streets. Report 1191. California Institute of Technology—work conducted for the National Advisory Committee for Aeronautics

  34. 34.

    Rougier E, Knight EE, Munjiza A (2013) LANL-CSM: HOSS—MUNROU technology overview. Presentation, LA-UR-13-23422

  35. 35.

    Knight EE, Rougier E, Lei Z (2015) Hybrid optimization software suite (HOSS)—educational version. Technical report, Los Alamos National Laboratory. LA-UR-15-27013

  36. 36.

    Knight EE, Rougier E, Munjiza A (2013) LANL-CSM: consortium proposal for the advancement of HOSS. Presentation, LA-UR-13-23409

  37. 37.

    Rougier E, Knight EE, Lei Z, Munjiza A, Mustoe G, Sarg R (2013) HOSS technology overview: oil and gas, LA-UR-13-29117. Los Alamos National Laboratory, Santa Fe

  38. 38.

    Euser B, Rougier E, Lei Z, Knight EE, Frash L, Carey JW, Viswanathan H, Munjiza A (2019) Simulation of fracture coalescence in granite via the combined finite-discrete element method. Rock Mech Rock Eng.

  39. 39.

    Rougier E, Knight EE, Broome ST, Sussman AJ, Munjiza A (2014) Validation of a three-dimensional finite-discrete element method using experimental results of the split Hopkinson pressure bar test. Int J Rock Mech Min Sci 70:101–108

  40. 40.

    Carey JW, Lei Z, Rougier E, Mori H, Viswanathan H (2015) Fracture-permeability behavior of shale. J Unconv Oil Gas Resour 11:27–43

  41. 41.

    Moore BA, Rougier E, O’Malley D, Srinivasan G, Hunter A, Viswanathan H (2018) Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Comput Mater Sci 148:46–53

  42. 42.

    Danaila I, Joly P, Kaber SM, Postel M (2007) Chapter 10: gas dynamics: the Riemann problem and discontinuous solutions: application to the shock tube problem. An introduction to scientific computing. Springer, New York. ISBN 978-0-387-30889-0

Download references

Author information

Correspondence to Esteban Rougier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Munjiza, A., Rougier, E., Lei, Z. et al. FSIS: a novel fluid–solid interaction solver for fracturing and fragmenting solids. Comp. Part. Mech. (2020).

Download citation


  • Fluid–structure interaction
  • FDEM
  • Fracture
  • Fragmentation
  • Fluid solver
  • Immersed boundary