Advertisement

Comparison of two numerical approaches (DEM and MPM) applied to unsteady flow

  • Fabio Gracia
  • Pascal Villard
  • Vincent RichefeuEmail author
Article

Abstract

In order to provide a comprehensive comparison between two current numerical methods employed in the modelling of rock avalanches, the discrete element method (DEM) and the material point method (MPM) were used to simulate the mass propagation along a \(45^{\circ }\) plane transitioning to a horizontal plane. For the DEM simulations, an in-house 3D code whose particles can be modelled as tetrahedral elements was used. Additionally, the flow was canalised using frictionless walls. For the MPM simulations, a 2D code was also developed and employed to run plane strain simulations. Comparisons were made in terms of runout distance, spreading and energy dissipated. Influence of parameters such as initial sample geometry, basal friction coefficient and shape of blocks composing the sample was studied. We found that there are proper correlations between the two methods when the basal friction coefficient has a low value, or when the rolling of the blocks is hindered by using elongated shapes for the blocks. These correlations become less satisfactory as the basal friction coefficient is increased, due to the oversimplified constitutive law employed in MPM.

Keywords

Discrete element method Material point method Continuum Transitional flow 

Notes

Acknowledgements

This work was supported and funded by IMSRN company (headed by Pierre Plotto) and ANRT (French ministry: Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation).

Supplementary material

40571_2019_236_MOESM1_ESM.zip (283 kb)
Supplementary material 1 (zip 283 KB)

References

  1. 1.
    Banton J, Villard P, Jongmans D, Scavia C (2009) Two-dimensional discrete element models of debris avalanches: parameterization and the reproducibility of experimental results. J Geophys Res 114(F4):F04013.  https://doi.org/10.1029/2008JF001161 CrossRefGoogle Scholar
  2. 2.
    Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. CMES Comput Model Eng Sci 5(6):477–495.  https://doi.org/10.3970/cmes.2004.005.477 Google Scholar
  3. 3.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256.  https://doi.org/10.1002/nme.1620370205 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bottelin P, Jongmans D, Daudon D, Mathy A, Helmstetter A, Bonilla-Sierra V, Cadet H, Amitrano D, Richefeu V, Lorier L, Baillet L, Villard P, Donz F (2014) Seismic and mechanical studies of the artificially triggered rockfall at the mount neron (french alps, december 2011). Nat Hazards Earth Syst Sci 14(2):3175–3193CrossRefGoogle Scholar
  5. 5.
    Brackbill J, Ruppel H (1986) FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J Comput Phys 65(2):314–343.  https://doi.org/10.1016/0021-9991(86)90211-1 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brackbill JU, Kothe DB, Ruppel HM (1988) Flip: a low-dissipation, particle-in-cell method for fluid flow. Comput Phys Commun 48(1):25–38.  https://doi.org/10.1016/0010-4655(88)90020-3 CrossRefGoogle Scholar
  7. 7.
    Brannon R, Burghardt JA, Bronowski D, Bauer S (2009) Experimental assessment of unvalidated assumptions in classical plasticity theory, Report No.: SAND2009-0351, Grant Number: AC04-94AL85000, Sandia National Laboratories (Pub.).  https://doi.org/10.2172/948711
  8. 8.
    Cleary PW, Prakash M (2004) Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Philos Trans R Soc A Math Phys Eng Sci 362(1822):2003–2030.  https://doi.org/10.1098/rsta.2004.1428 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cundall P (1971) A computer model for simulating progressive, large scale movement in blocky rock systems. In: Proceedings of the symposium of the international society for rock mechanics, society for rock mechanics (ISRM), Nancy, France, vol 2, pp 129–136Google Scholar
  10. 10.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65.  https://doi.org/10.1680/geot.1979.29.1.47 CrossRefGoogle Scholar
  11. 11.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389.  https://doi.org/10.1093/mnras/181.3.375 CrossRefzbMATHGoogle Scholar
  12. 12.
    Harlow FH (1957) Hydrodynamic problems involving large fluid distortions. J ACM 4(2):137–142.  https://doi.org/10.1145/320868.320871 CrossRefGoogle Scholar
  13. 13.
    Jop P, Forterre Y, Pouliquen O (2006) A new constitutive law for dense granular flows. Nature 441:1–13CrossRefGoogle Scholar
  14. 14.
    Mangeney-Castelnau A (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527.  https://doi.org/10.1029/2002JB002024 CrossRefGoogle Scholar
  15. 15.
    Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Eng Geol 109(1–2):146–158.  https://doi.org/10.1016/j.enggeo.2008.11.006 CrossRefGoogle Scholar
  16. 16.
    Manzella I, Labiouse V (2013) Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation. Landslides 10(1):23–36.  https://doi.org/10.1007/s10346-011-0313-5 CrossRefGoogle Scholar
  17. 17.
    McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097.  https://doi.org/10.1139/t04-052 CrossRefGoogle Scholar
  18. 18.
    Mollon G, Richefeu V, Villard P, Daudon D (2012) Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J Geophys Res Earth 117(F2):F02036.  https://doi.org/10.1029/2011JF002202 Google Scholar
  19. 19.
    Mollon G, Richefeu V, Villard P, Daudon D (2015) Discrete modelling of rock avalanches: sensitivity to block and slope geometries. Granul Matter 17(5):645–666.  https://doi.org/10.1007/s10035-015-0586-9 CrossRefGoogle Scholar
  20. 20.
    Moresi L, Dufour F, Mühlhaus HB (2003) A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J Comput Phys 184:476–497.  https://doi.org/10.1016/S0021-9991(02)00031-1 CrossRefzbMATHGoogle Scholar
  21. 21.
    Okura Y, Kitahara H, Sammori T, Kawanami A (2000) Effects of rockfall volume on runout distance. Eng Geol 58(2):109–124.  https://doi.org/10.1016/S0013-7952(00)00049-1 CrossRefGoogle Scholar
  22. 22.
    Pirulli M, Bristeau MO, Mangeney A, Scavia C (2007) The effect of the earth pressure coefficients on the runout of granular material. Environ Model Softw 22(10):1437–1454.  https://doi.org/10.1016/j.envsoft.2006.06.006 CrossRefGoogle Scholar
  23. 23.
    Richefeu V, Mollon G, Daudon D, Villard P (2012) Dissipative contacts and realistic block shapes for modeling rock avalanches. Eng Geol 149–150:78–92.  https://doi.org/10.1016/j.enggeo.2012.07.021 CrossRefGoogle Scholar
  24. 24.
    Stoker H (1999) Developments of the arbitrary lagrangian-eulerian method in non-linear solid mechanics applications to forming processes. Universiteit Twente, EnschedeGoogle Scholar
  25. 25.
    Sulsky D, Brackbill JU (1991) A numerical method for suspension flow. J Comput Phys 96(2):339–368.  https://doi.org/10.1016/0021-9991(91)90240-L CrossRefzbMATHGoogle Scholar
  26. 26.
    Sulsky D, Chen Z, Schreyer HH (1994) A particle method for history-dependent materials. Comput Methods Appl Mech 118:179–196.  https://doi.org/10.1016/0045-7825(94)90112-0 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Taboada A, Estrada N (2009) Rock-and-soil avalanches: theory and simulation. J Geophys Res Solid Earth 114(3):1–23.  https://doi.org/10.1029/2008JF001072 Google Scholar
  28. 28.
    Tommasi P, Campedel P, Consorti C, Ribacchi R (2008) A discontinuous approach to the numerical modelling of rock avalanches. Rock Mech Rock Eng 41(1):37–58.  https://doi.org/10.1007/s00603-007-0133-z CrossRefGoogle Scholar
  29. 29.
    Valentino R, Barla G, Montrasio L (2008) Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng 41(1):153–177.  https://doi.org/10.1007/s00603-006-0126-3 CrossRefGoogle Scholar
  30. 30.
    Wood DM (1991) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139878272 CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhou GG, Sun QC (2013) Three-dimensional numerical study on flow regimes of dry granular flows by DEM. Powder Technol 239:115–127.  https://doi.org/10.1016/j.powtec.2013.01.057 CrossRefGoogle Scholar
  32. 32.
    Zienkiewicz OC, Taylor RLRL (2005) The finite element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, OxfordzbMATHGoogle Scholar

Copyright information

© OWZ 2019

Authors and Affiliations

  1. 1.IMSRNMontbonnotFrance
  2. 2.Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SRGrenobleFrance

Personalised recommendations