Advertisement

Computational Particle Mechanics

, Volume 6, Issue 2, pp 177–190 | Cite as

Investigation of the mechanical responses of copper nanowires based on molecular dynamics and coarse-grained molecular dynamics

  • Yu-Chen Su
  • Shan Jiang
  • Yong Gan
  • Zhen ChenEmail author
  • Jian-Ming Lu
Article
  • 70 Downloads

Abstract

The mesoscale coarse-grained molecular dynamics (CG-MD) models for copper nanowires with different crystallographic orientations are developed via increasing the integration time step and grouping a certain number of atoms into one mesoscale particle. The tensile and torsional responses of copper nanowires at various temperatures and loading rates are then studied using the CG-MD and molecular dynamics (MD) simulations. In the tensile cases, the CG-MD simulations yield the tendency of Young’s modulus with a good agreement with that by the MD. For the torsional loading, the relation between loading rate and critical angle by the CG-MD is also in line with that by the MD, while the CG-MD predictions for low temperatures are not in close agreement with those by the MD. Although the CG-MD model could not perfectly fit the results from the MD and requires further improvement, it could be used as a starting point to evaluate the mechanical response of nanowire with less computational expenses than the MD model.

Keywords

Mesoscale model Molecular dynamics Tension Torsion Metal nanowire Thermal effect 

Notes

Funding

This work was supported in part by the National Natural Science Foundation of China (11672062 and 11232003), and National Center for High-Performance Computing, National Applied Research Laboratories (MOST 106-2221-E-492-014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  2. 2.
    Mehrez H, Wlasenko A, Larade B, Taylor J, Grütter P, Guo H (2002) I–V characteristics and differential conductance fluctuations of Au nanowires. Phys Rev B 65:195419CrossRefGoogle Scholar
  3. 3.
    Alexandrov AS, Kabanov VV (2005) Magnetic quantum oscillations in nanowires. Phys Rev Lett 95:076601CrossRefGoogle Scholar
  4. 4.
    Miyake T, Saito S (2002) Electronic structure of potassium-doped carbon nanotubes. Phys Rev B 65:165419CrossRefGoogle Scholar
  5. 5.
    Chen HM, Liu RS, Lo MY, Chang SC, Tsai LD, Peng YM, Lee JF (2008) Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J Phys Chem C 112:7522–7526CrossRefGoogle Scholar
  6. 6.
    Miao L, Bhethanabotla VR, Joseph B (2005) Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation. Phys Rev B 72:134109CrossRefGoogle Scholar
  7. 7.
    Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608CrossRefGoogle Scholar
  8. 8.
    Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115CrossRefGoogle Scholar
  9. 9.
    Wu Y, Xiang J, Yang C, Lu W, Lieber CM (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430:61CrossRefGoogle Scholar
  10. 10.
    Liang W, Zhou M (2004) Response of copper nanowires in dynamic tensile deformation. Proc Inst Mech Eng C J Mech Eng Sci 218:599–606CrossRefGoogle Scholar
  11. 11.
    Koh SJA, Lee HP, Lu C, Cheng QH (2005) Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects. Phys Rev B 72:085414CrossRefGoogle Scholar
  12. 12.
    Gao Y, Wang H, Zhao J, Sun C, Wang F (2011) Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Comput Mater Sci 50:3032–3037CrossRefGoogle Scholar
  13. 13.
    Wu HA (2004) Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Comput Mater Sci 31:287–291CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Zhang H, Chen Z, Jiang S (2009) Deformation and stability of copper nanowires under bending. Int J Multiscale Comput Eng 7:205CrossRefGoogle Scholar
  15. 15.
    McDowell MT, Leach AM, Gall K (2008) Bending and tensile deformation of metallic nanowires. Modell Simul Mater Sci Eng 16:045003CrossRefGoogle Scholar
  16. 16.
    Zhan HF, Gu Y (2012) Theoretical and numerical investigation of bending properties of Cu nanowires. Comput Mater Sci 55:73–80CrossRefGoogle Scholar
  17. 17.
    Jiang S, Zhang H, Zheng Y, Chen Z (2009) Atomistic study of the mechanical response of copper nanowires under torsion. J Phys D Appl Phys 42:135408CrossRefGoogle Scholar
  18. 18.
    Jiang S, Zhang H, Zheng Y, Chen Z (2010) Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires. J Phys D Appl Phys 43:335402CrossRefGoogle Scholar
  19. 19.
    Sung PH, Wu CD, Fang TH (2012) Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation. J Phys D Appl Phys 45:215303CrossRefGoogle Scholar
  20. 20.
    Gao Y, Wang F, Zhu T, Zhao J (2010) Investigation on the mechanical behaviors of copper nanowires under torsion. Comput Mater Sci 49:826–830CrossRefGoogle Scholar
  21. 21.
    Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B 37:3924CrossRefGoogle Scholar
  22. 22.
    Johnson RA (1988) Relationship between defect energies and embedded-atom-method parameters. Phys Rev B 37:6121CrossRefGoogle Scholar
  23. 23.
    Johnson RA (1989) Alloy models with the embedded-atom method. Phys Rev B 39:12554CrossRefGoogle Scholar
  24. 24.
    Chen Z, Jiang S, Gan Y, Liu H, Sewell TD (2014) A particle-based multiscale simulation procedure within the material point method framework. Comput Part Mech 1:147–158CrossRefGoogle Scholar
  25. 25.
    Jiang S, Chen Z, Sewell TD, Gan Y (2015) Multiscale simulation of the responses of discrete nanostructures to extreme loading conditions based on the material point method. Comput Methods Appl Mech Eng 297:219–238MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gan Y, Jiang S, Su Y, Sewell TD, Chen Z (2016) A coarse-grained model for fcc metals based on hierarchical coupling between molecular dynamics and isothermal dissipative particle dynamics. Chin J Comput Mech 33:621Google Scholar
  27. 27.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Forrest BM, Suter UW (1995) Accelerated equilibration of polymer melts by time-coarse-graining. J Chem Phys 102:7256–7266CrossRefGoogle Scholar
  29. 29.
    Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals. Philos Mag A 50:45–55CrossRefGoogle Scholar
  30. 30.
    Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method. J Mater Res 4:102–112CrossRefGoogle Scholar
  31. 31.
    Ikeda H, Qi Y, Cagin T, Samwer K, Johnson WL, Goddard WA III (1999) Strain rate induced amorphization in metallic nanowires. Phys Rev Lett 82:2900CrossRefGoogle Scholar
  32. 32.
    Zhou XW, Johnson RA, Wadley HNG (2004) Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 69:144113CrossRefGoogle Scholar
  33. 33.
    Gan Y, Chen JK (2009) Molecular dynamics study of size, temperature and strain rate effects on mechanical properties of gold nanofilms. Appl Phys A 95:357–362CrossRefGoogle Scholar
  34. 34.
    Qian LX (1983) Engineering structural optimization design. Hydraulic-Electric Press, BeijingGoogle Scholar
  35. 35.
    Qian LX, Zhong WX, Cheng KT, Sui YK (1984) An Approach to structural optimization—sequential quadratic programming, SQP. Eng Optim 8:83–100CrossRefGoogle Scholar
  36. 36.
    Goldberg DE (1989) Sizing populations for serial and parallel genetic algorithms. In Proceedings of 3rd international conference on genetic algorithmsGoogle Scholar
  37. 37.
    Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695CrossRefGoogle Scholar
  38. 38.
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRefGoogle Scholar
  39. 39.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefzbMATHGoogle Scholar
  40. 40.
    Miller BL, Goldberg DE (1995) Genetic algorithms, tournament selection, and the effects of noise. Complex Syst 9:193–212MathSciNetGoogle Scholar
  41. 41.
    Coura PZ, Legoas SB, Moreira AS, Sato F, Rodrigues V, Dantas SO, Ugarte D, Galvao DS (2004) On the structural and stability features of linear atomic suspended chains formed from gold nanowires stretching. Nano Lett 4:1187–1191CrossRefGoogle Scholar
  42. 42.
    Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177:518–523CrossRefGoogle Scholar

Copyright information

© OWZ 2018

Authors and Affiliations

  1. 1.Department of Civil and Environment EngineeringUniversity of MissouriColumbiaUSA
  2. 2.University of MississippiUniversityUSA
  3. 3.Department of Engineering MechanicsZhejiang UniversityZhejiangChina
  4. 4.State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyLiaoningChina
  5. 5.National Center for High-Performance ComputingNational Applied Research LaboratoriesTainan CityTaiwan

Personalised recommendations