Advertisement

Computational Particle Mechanics

, Volume 5, Issue 3, pp 345–354 | Cite as

A hybrid Lagrangian Voronoi–SPH scheme

  • D. Fernandez-GutierrezEmail author
  • A. Souto-Iglesias
  • T. I. Zohdi
Article

Abstract

A hybrid Lagrangian Voronoi–SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

Keywords

CFD SPH Voronoi Coupling 

Notes

Acknowledgements

The authors thank Francisco J. Dominguez for assistance with the artwork. Antonio Souto-Iglesias acknowledges the support of Universidad Politécnica de Madrid for funding his leave in UC Berkeley Department of Mechanical Engineering from September 2016 until June 2017.

Compliance with ethical standard

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181(3):532–549.  https://doi.org/10.1016/j.cpc.2009.11.002 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580.  https://doi.org/10.1016/j.cpc.2012.07.006 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Antuono M, Marrone S, Colagrossi A, Bouscasse B (2015) Energy balance in the \(\delta \)-SPH scheme. Comput Methods Appl Mech Eng 289:209–226MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barcarolo DA (2013) Improvement of the precision and the efficiency of the SPH method: theoretical and numerical study. Ph.D. thesis, Ecole Centrale de NantesGoogle Scholar
  5. 5.
    Barcarolo DA, Touzé DL, Oger G, de Vuyst F (2014) Voronoi-SPH: on the analysis of a hybrid finite volumes-smoothed particle hydrodynamics method. In: 9th international SPHERIC workshop, pp 371–378Google Scholar
  6. 6.
    Batchelor GK (1967) Introduction to fluid dynamics. Cambridge University Press, New YorkzbMATHGoogle Scholar
  7. 7.
    Cercos-Pita J (2015) AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. Comput Phys Commun 192:295–312.  https://doi.org/10.1016/j.cpc.2015.01.026 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Colagrossi A, Bouscasse B, Antuono M, Marrone S (2012) Particle packing algorithm for SPH schemes. Comput Phys Commun 183(2):1641–1683MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Colagrossi A, Souto-Iglesias A, Antuono M, Marrone S (2013) Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Phys Rev E 87(023):302Google Scholar
  10. 10.
    Duque D, Español P, de la Torre JA (2017) Extending linear finite elements to quadratic precision on arbitrary meshes. Appl Math Comput 301:201–213.  https://doi.org/10.1016/j.amc.2016.12.010 MathSciNetGoogle Scholar
  11. 11.
    Gray J (2001) Caldera collapse and the generation of waves. Ph.D. thesis, Monash UniversityGoogle Scholar
  12. 12.
    Hess S, Springel V (2010) Particle hydrodynamics with tessellation techniques. Mon Not R Astron Soc 406(4):2289–2311,  https://doi.org/10.1111/j.1365-2966.2010.16892.x.
  13. 13.
    Kumar P, Yang Q, Jones V, McCue-Weil L (2015) Coupled SPH-FVM simulation within the OpenFOAM framework. Procedia IUTAM 18:76–84.  https://doi.org/10.1016/j.piutam.2015.11.008 CrossRefGoogle Scholar
  14. 14.
    Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137.  https://doi.org/10.1109/TIT.1982.1056489 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Macià F, Sánchez JM, Souto-Iglesias A, González LM (2012) WCSPH viscosity diffusion processes in vortex flows. Int J Numer Methods Fluids 69(3):509–533MathSciNetCrossRefGoogle Scholar
  16. 16.
    Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) Delta-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13–16):1526–1542.  https://doi.org/10.1016/j.cma.2010.12.016 CrossRefzbMATHGoogle Scholar
  17. 17.
    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J Comput Phys 245:456–475.  https://doi.org/10.1016/j.jcp.2013.03.011 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marrone S, Mascio AD, Le Touzé D (2016) Coupling of smoothed particle hydrodynamics with finite volume method for free-surface flows. J Comput Phys 310:161–180 available online 11 December 2015MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):39–406CrossRefzbMATHGoogle Scholar
  20. 20.
    Monaghan J (2012) Smoothed particle hydrodynamics and its diverse applications. Ann Rev Fluid Mech 44(1):323–346MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Monaghan JJ (2005) Smoothed particle hydrodynamic simulations of shear flow. Mon Not R Astron Soc 365:199–213.  https://doi.org/10.1111/j.1365-2966.2005.09783.x CrossRefGoogle Scholar
  22. 22.
    Napoli E, Marchis MD, Gianguzzi C, Milici B, Monteleone A (2016) A coupled finite volume-smoothed particle hydrodynamics method for incompressible flows. Comput Methods Appl Mech Eng 310:674–693.  https://doi.org/10.1016/j.cma.2016.07.034 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ott F, Schnetter E (2003) A modified SPH approach for fluids with large density differences. arXiv:physics/0303112
  24. 24.
    Quinlan NJ, Lastiwka M, Basa M (2006) Truncation error in mesh-free particle methods. Int J Numer Methods Eng 66(13):2064–2085.  https://doi.org/10.1002/nme.1617 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Serrano M (2006) Comparison between smoothed dissipative particle dynamics and Voronoi fluid particle model in a shear stationary flow. Phys A Stat Mech Appl 362(1):204–209.  https://doi.org/10.1016/j.physa.2005.09.024 CrossRefGoogle Scholar
  26. 26.
    Serrano M, Español P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(046):115.  https://doi.org/10.1103/PhysRevE.64.046115 Google Scholar
  27. 27.
    Souto-Iglesias A, Delorme L, Pérez-Rojas L, Abril-Pérez S (2006) Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng 33(11–12):1462–1484CrossRefGoogle Scholar
  28. 28.
    Springel V (2010) E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Monthly Notices of the Royal Astronomical Society 401(2):791.  https://doi.org/10.1111/j.1365-2966.2009.15715.x.

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of California at BerkeleyBerkeleyUSA
  2. 2.CEHINAV, DMFPA, ETSINUniversidad Politécnica de MadridMadridSpain

Personalised recommendations