Computational Particle Mechanics

, Volume 5, Issue 2, pp 161–174 | Cite as

On inconsistency in frictional granular systems

Article

Abstract

Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

Keywords

Nonsmooth contact dynamics Frictional granular media Painlevé paradox 

Mathematics Subject Classification

65L08 49J52 65L80 

References

  1. 1.
    Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Springer, BerlinMATHGoogle Scholar
  2. 2.
    Acary V, Cadoux F, Lemaréchal C, Malick J (2011) A formulation of the linear discrete Coulomb friction problem via convex optimization. Zeitschrift für angewandte Mathematik und Mechanik 91(2):155–175MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Acary V, Cadoux F (2013) Applications of an existence result for the Coulomb friction problem. In: Recent advances in contact mechanics. Springer, Berlin, pp 45–66Google Scholar
  4. 4.
    Alart P (2014) How to overcome indetermination and interpenetration in granular systems via nonsmooth contact dynamics. An exploratory investigation. Comput Methods Appl Mech Eng 270:37–56MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Anderson JD, Wendt J (1995) Computational fluid dynamics, vol 206. Springer, BerlinGoogle Scholar
  6. 6.
    Avitzur B, Nakamura Y (1986) Analytical determination of friction resistance as a function of normal load and geometry of surface irregularities. Wear 107(4):367–383CrossRefGoogle Scholar
  7. 7.
    Azéma E, Radjai F, Saussine G (2009) Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech Mater 41(6):729–741CrossRefGoogle Scholar
  8. 8.
    Brogliato B (1999) Nonsmooth mechanics. Springer, BerlinCrossRefMATHGoogle Scholar
  9. 9.
    Cantor D, Estrada N, Azéma E (2015) Split-cell method for grain fragmentation. Comput Geotech 67:150–156CrossRefGoogle Scholar
  10. 10.
    Champneys AR, Varkonyi PL (2016) The Painlevé paradox in contact mechanics. arXiv preprint arXiv:1601.03545
  11. 11.
    Delassus E (1923) Sur les lois du frottement de glissement. Bulletin de la Société Mathématique de France 51:22–33MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dubois F, Jean M (2006) The non smooth contact dynamic method: recent LMGC90 software developments and application. In: Wriggers P, Nackenhorst U (eds) Analysis and simulation of contact problems. Springer, Berlin, pp 375–378Google Scholar
  13. 13.
    Frémond M (2002) Non-smooth thermodynamics. Springer, BerlinMATHGoogle Scholar
  14. 14.
    Frémond M (2007) Collisions. Dipartemento di Ingeneria Civile, Universitá di Roma Tor Vergata, RomeMATHGoogle Scholar
  15. 15.
    Génot F, Brogliato B (1999) New results on Painlevé paradoxes. Eur J Mech A Solids 18(4):653–677MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jean M (1999) The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 177:235–257MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Klarbring A, Pang J-S (1998) Existence of solutions to discrete semicoercive frictional contact problems. SIAM J Optim 8(2):414–442MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Koziara T, Bićanić N (2011) A distributed memory parallel multibody contact dynamics code. Int J Numer Methods Eng 87(1–5):437–456CrossRefMATHGoogle Scholar
  19. 19.
    Laniel R, Alart P, Pagano S (2008) Discrete element investigations of wire-reinforced geomaterial in a three-dimensional modeling. Comput Mech 42(1):67–76CrossRefMATHGoogle Scholar
  20. 20.
    Lecornu L (1905) Sur la loi de Coulomb. Comptes Rendus Acad Sci Paris 140:847–848MATHGoogle Scholar
  21. 21.
    Moreau JJ (1999) Numerical aspects of sweeping process. Comput Methods Appl Mech Eng 177:329–349MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Moreau JJ (2003) Modélisation et simulation de matériaux granulaires. In: Actes du 35eme Congres National dAnalyse NumériqueGoogle Scholar
  23. 23.
    Moreau JJ (2004) An introduction to unilateral dynamics. In: Fremond M, Maceri F (eds) Novel approaches in civil engineering. Lecture notes in applied and computational mechanics, vol 14. Springer, Berlin, pp 1–46CrossRefGoogle Scholar
  24. 24.
    Moreau JJ (2005) Indetermination in the numerical simulation of granular systems. In: Garcia-Rojo R, Herrmann HJ, Mc Namar S (eds) Powders and grains 2005. Balkema, Leiden, pp 109–112Google Scholar
  25. 25.
    Moreau JJ (2006) Facing the plurality of solutions in non smooth mechanics. In: Nonsmooth/nonconvex mechanics with applications in engineering. Proceeding international conference in memoriam of P.D. Panagiotopoulos. Editions Ziti, Thessaloniki, pp 3–12Google Scholar
  26. 26.
    Nguyen NS, Brogliato B (2014) Multiple impacts in dissipative granular chains. Lecture notes in applied and computational mechanics, vol 72. SpringerGoogle Scholar
  27. 27.
    Nguyen D-H, Azéma E, Sornay P, Radjai F (2015) Bonded-cell model for particle fracture. Phys Rev E 91:022203MathSciNetCrossRefGoogle Scholar
  28. 28.
    Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proc Inst Mech Eng 150(1):140–167CrossRefGoogle Scholar
  29. 29.
    Painlevé P (1905) Sur les lois de frottement et de glissement. Comptes Rendus Acad Sci Paris 121:112–115MATHGoogle Scholar
  30. 30.
    Perales F, Dubois F, Monerie Y, Piar B, Stainier L (2010) A nonsmooth contact dynamics-based multi-domain solver: code coupling (Xper) and application to fracture. Eur J Comput Mech /Revue Européenne de Mécanique Numérique 19(4):389–417CrossRefGoogle Scholar
  31. 31.
    Radjaï F, Jean M, Moreau JJ, Roux S (1996) Force distributions in dense two dimensional granular systems. Phys Rev Lett 77:274–277CrossRefGoogle Scholar
  32. 32.
    Radjaï F, Wolf DE, Jean M, Moreau JJ (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80(1):61–64CrossRefGoogle Scholar
  33. 33.
    Renouf M, Alart P (2005) Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comput Methods Appl Mech Eng 194(18–20):2019–2041MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Renouf M, Dubois F, Alart P (2006) Numerical investigations of fault propagation and forced-fold using a non smooth discrete element method. Eur J Comput Mech 15:549–570CrossRefMATHGoogle Scholar
  35. 35.
    Stupkiewicz S, Mróz Z (1999) A model of third body abrasive friction and wear in hot metal forming. Wear 231(1):124–138CrossRefGoogle Scholar
  36. 36.
    Visseq V, Martin A, Iceta D, Azema E, Dureisseix D, Alart P (2012) Dense granular dynamics analysis by a domain decomposition approach. Comput Mech 49:709–723MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© OWZ 2017

Authors and Affiliations

  1. 1.LMGCUniversité de Montpellier, CNRSMontpellierFrance
  2. 2.Laboratoire de Micromécanique et d’Intégrité des Structures (MIST), IRSNUniversité de Montpellier, CNRSMontpellierFrance

Personalised recommendations