Computational Particle Mechanics

, Volume 4, Issue 3, pp 321–329 | Cite as

Seakeeping with the semi-Lagrangian particle finite element method

  • Prashanth NadukandiEmail author
  • Borja Servan-Camas
  • Pablo Agustín Becker
  • Julio Garcia-Espinosa


The application of the semi-Lagrangian particle finite element method (SL–PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL–PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.


Particle finite element method Semi-Lagrangian formulations Seakeeping 



Permission to use the image shown in Fig. 1 has been granted by Prof. Mehdi Ahmadian, VirginiaTech, USA. This image has appeared earlier in Andrew William Peterson’s Ph.D. thesis [25, Fig. 3.12, p. 55].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


This study was partially supported by the WAM-V project funded under the Navy Grant N62909-12-1-7101 issued by Office of Naval Research Global, the SAFECON project (ref. 267521, FP7-IDEAS-ERC) and the FORECAST project (ref. 664910, H2020-ERC-2014-PoC) of the European Research Council (European Commission). The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.


  1. 1.
    Becker P, Idelsohn SR, Oñate E (2014) A unified monolithic approach for multi-fluid flows and fluid–structure interaction using the particle finite element method with fixed mesh. Comput Mech 55:1091. doi: 10.1007/s00466-014-1107-0 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Celledoni E, Kometa BK, Verdier O (2015) High order semi-Lagrangian methods for the incompressible Navier–Stokes equations. J Sci Comput 66:91. doi: 10.1007/s10915-015-0015-6 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11:215. doi: 10.1147/rd.112.0215 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5(3):243–255. doi: 10.1002/cpa.3160050303 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297. doi: 10.1007/s11831-010-9045-2 CrossRefzbMATHGoogle Scholar
  6. 6.
    Dupont TF, Liu Y (2003) Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J Comput Phys 190(1):311–324. doi: 10.1016/S0021-9991(03)00276-6 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dupont TF, Liu Y (2007) Back and forth error compensation and correction methods for semi-lagrangian schemes with application to level set interface computations. Math Comput 76(258):647–669. doi: 10.1090/S0025-5718-06-01898-9 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Evans MW, Harlow FH (1957) The particle-in-cell method for hydrodynamic calculations. Technical report, Los Alamos National Laboratory, Los Alamos.
  9. 9.
    Gelet RM, Nguyen G, Rognon P (2015) Modelling interaction of incompressible fluids and deformable particles with the Material Point Method. In: The 6th International conference on computational methods (ICCM2015)Google Scholar
  10. 10.
    Gimenez JM, Nigro NM, Idelsohn SR (2014) Evaluating the performance of the particle finite element method in parallel architectures. Comput Part Mech 1(1):103–116. doi: 10.1007/s40571-014-0009-4 CrossRefGoogle Scholar
  11. 11.
    Harlow FH (1957) Hydrodynamic problems involving large fluid distortions. J ACM 4(2):137–142. doi: 10.1145/320868.320871 CrossRefGoogle Scholar
  12. 12.
    Higham NJ (2002) Accuracy and stability of numerical algorithms. Soc Ind Appl Math. doi: 10.1137/1.9780898718027
  13. 13.
    Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644. doi: 10.1002/fld.3908 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Idelsohn SR, Mier-Torrecilla M, Nigro N, Oñate E (2010) On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Comput Mech 46(1):115–124. doi: 10.1007/s00466-009-0448-6 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Idelsohn SR, de Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198(33–36):2750–2767. doi: 10.1016/j.cma.2009.04.002
  16. 16.
    Idelsohn SR, Nigro N, Limache A, Oñate E (2012) Large time-step explicit integration method for solving problems with dominant convection. Comput Methods Appl Mech Eng 217–220:168–185. doi: 10.1016/j.cma.2011.12.008
  17. 17.
    Idelsohn SR, Nigro NM, Gimenez JM, Rossi R, Marti JM (2013) A fast and accurate method to solve the incompressible Navier-Stokes equations. Eng Comput 30(2):197–222. doi: 10.1108/02644401311304854 CrossRefGoogle Scholar
  18. 18.
    Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989. doi: 10.1002/nme.1096 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Idelsohn SR, Oñate E, Nigro N, Becker P, Gimenez J (2015) Lagrangian versus Eulerian integration errors. Comput Methods Appl Mech Eng 293:191–206. doi: 10.1016/j.cma.2015.04.003 MathSciNetCrossRefGoogle Scholar
  20. 20.
    MacCormack RW (2003) The effect of viscosity in hypervelocity impact cratering. J Spacecr rockets 40(5):757–763. doi: 10.2514/2.6901 CrossRefGoogle Scholar
  21. 21.
    Marti J, Ryzhakov P, Idelsohn SR, Oñate E (2012) Combined Eulerian-PFEM approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782. doi: 10.1002/nme.4357 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Min C, Gibou F (2006) A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids. J Comput Phys 219(2):912–929. doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nadukandi P (2015) Numerically stable formulas for a particle-based explicit exponential integrator. Comput Mech 55(5):903–920. doi: 10.1007/s00466-015-1142-5 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nielson GM, Jung IH (1999) Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains. IEEE Trans Vis Comput Graph 5(4):360–372. doi: 10.1109/2945.817352 CrossRefGoogle Scholar
  25. 25.
    Peterson AW (2014) Simulation and Testing of wave-adaptive modular vessels. Ph.D. thesis, Virginia Polytechnic Institute and State University.
  26. 26.
    Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmosphere-Ocean 19(1):35–46. doi: 10.1080/07055900.1981.9649098 CrossRefGoogle Scholar
  27. 27.
    Ryzhakov P (2016) A modified fractional step method for fluid–structure interaction problems. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. doi: 10.1016/j.rimni.2015.09.002
  28. 28.
    Ryzhakov P, Rossi R, Oñate E (2012) An algorithm for the simulation of thermally coupled low speed flow problems. Int J Numer Methods Fluids 70(1):1–19. doi: 10.1002/fld.2674 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sawyer JS (1963) A semi-Lagrangian method of solving the vorticity advection equation. Tellus 15(4):336–342. doi: 10.1111/j.2153-3490.1963.tb01396.x CrossRefGoogle Scholar
  30. 30.
    Selle A, Fedkiw R, Kim B, Liu Y, Rossignac J (2008) An unconditionally stable MacCormack method. J Sci Comput 35(2–3):350–371. doi: 10.1007/s10915-007-9166-4 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252. doi: 10.1016/0010-4655(94)00170-7
  32. 32.
    WAM-V: the wave adaptive modular vessel.
  33. 33.
    Zhang DZ, Zou Q, VanderHeyden WB, Ma X (2008) Material point method applied to multiphase flows. J Comput Phys 227(6):3159–3173. doi: 10.1016/ MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© OWZ 2016

Authors and Affiliations

  1. 1.Centre Internacional de Mètodos Numèrics en Enginyeria (CIMNE)BarcelonaSpain

Personalised recommendations