Computational Particle Mechanics

, Volume 3, Issue 3, pp 429–434 | Cite as

Instationary compaction wave propagation in highly porous cohesive granular media

  • Nina Gunkelmann
  • Christian Ringl
  • Herbert M. Urbassek


We study the collision of a highly porous granular aggregate of adhesive \(\upmu \)m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.


Granular mechanics Porous clusters Dust collisions Compaction 


  1. 1.
    Bourne N (2013) Materials in mechanical extremes. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Lopatnikov SL, Gama BA, Jahirul Haque M, Krauthauser C, Gillespie Jr JW, Guden M, Hall IW (2003) Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos Struct 61:61–71CrossRefGoogle Scholar
  3. 3.
    Ringl C, Gunkelmann N, Bringa EM (2015) Compaction of highly porous granular matter by impacts on a hard wall. Phys Rev E 91:042205. doi:10.1103/PhysRevE.91.042205 CrossRefGoogle Scholar
  4. 4.
    Grün E (2007) Solar system dust. In: McFadden LA, Weissman PR, Johnson TV (eds) Encyclopedia of the solar system, 2nd edn. Academic, New York, p 621Google Scholar
  5. 5.
    Jutzi M, Benz W, Michel P (2008) Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198:242–255CrossRefGoogle Scholar
  6. 6.
    Duran J (2000) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Mishra BK, Thornton C (2001) Impact breakage of particle agglomerates. Int J Miner Process 61:225–239CrossRefGoogle Scholar
  8. 8.
    Reynolds GK, Fu JS, Cheong YS, Hounslow MJ, Salman AD (2005) Breakage in granulation: a review. Chem Eng Sci 60:3969–3992CrossRefGoogle Scholar
  9. 9.
    Pöschel T, Schwager T (2005) Computational granular dynamics: models and algorithms. Springer, BerlinGoogle Scholar
  10. 10.
    Carmona HA, Wittel FK, Kun F, Herrmann HJ (2008) Fragmentation processes in impact of spheres. Phys Rev E 77:051302. doi:10.1103/PhysRevE.77.051302 CrossRefMATHGoogle Scholar
  11. 11.
    Tong ZB, Yang RY, Yu AB, Adi S, Chan HK (2009) Numerical modelling of the breakage of loose agglomerates of fine particles. Powder Technol 196:213–221CrossRefGoogle Scholar
  12. 12.
    Hein K, Hucke T, Stintz M, Ripperger S (2002) Analysis of adhesion forces between particles and wall based on the vibration method. Part Part Syst Charact 19:269–276CrossRefGoogle Scholar
  13. 13.
    Weidling R, Güttler C, Blum J, Brauer F (2009) The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. Astrophys J 696:2036–2043CrossRefGoogle Scholar
  14. 14.
    Wittel FK (2010) Single particle fragmentation in ultrasound assisted impact comminution. Granul Matter 12:447–455CrossRefMATHGoogle Scholar
  15. 15.
    Blum J, Schräpler R (2004) Structure and mechanical properties of high-porosity macroscopic agglomerates formed by random ballistic deposition. Phys Rev Lett 93:115503CrossRefGoogle Scholar
  16. 16.
    Blum J (2006) Dust agglomeration. Adv Phys 55:881–947CrossRefGoogle Scholar
  17. 17.
    Ringl C (2012) Granularmechanische Simulationen von Staubagglomeraten. PhD Thesis, University KaiserslauternGoogle Scholar
  18. 18.
    Ringl C, Urbassek HM (2012) A LAMMPS implementation of granular mechanics: inclusion of adhesive and microscopic friction forces. Comput Phys Commun 183:986–992MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn 12:140–152MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dominik C, Tielens AGGM (1997) The physics of dust coagulation and the structure of dust aggregates in space. Astrophys J 480:647–673CrossRefGoogle Scholar
  21. 21.
    Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2007) Numerical simulation of dust aggregate collisions. I. Compression and disruption of two-dimensional aggregates. Astrophys J 661:320–333CrossRefGoogle Scholar
  22. 22.
    Brilliantov NV, Spahn F, Hertzsch JM, Pöschel T (1996) Model for collisions in granular gases. Phys Rev E 53:5382–5392. doi:10.1103/PhysRevE.53.5382
  23. 23.
    Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53:314–326CrossRefGoogle Scholar
  24. 24.
    Maugis D (2000) Contact, adhesion and rupture of elastic solids. Springer, BerlinCrossRefMATHGoogle Scholar
  25. 25.
    Burnham N, Kulik AA (1999) Chapter 5: surface forces and adhesion. In: Bhushan B (ed) Handbook of micro/nano tribology, 2nd edn. CRC Press, Boca Raton, pp 247–271Google Scholar
  26. 26.
    Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. Astrophys J 407:806–819CrossRefGoogle Scholar
  27. 27.
    Poppe T, Blum J, Henning T (2000) Analogous experiments on the stickiness of micron-sized preplanetary dust. Astrophys J 533:454–471CrossRefGoogle Scholar
  28. 28.
    Meisner T, Wurm G, Teiser J (2012) Experiments on centimeter-sized dust aggregates and their implications for planetesimal formation. Astron Astrophys 544:A138CrossRefGoogle Scholar
  29. 29.
    Wolf DE, Unger T, Kadau D, Brendel L (2005) Compaction of cohesive powders. In: Garcia-Rojo R, Herrmann HJ, McNamara S (eds) Powders and grains. Balkema, Leiden, pp 525–538Google Scholar

Copyright information

© OWZ 2016

Authors and Affiliations

  • Nina Gunkelmann
    • 1
  • Christian Ringl
    • 1
  • Herbert M. Urbassek
    • 1
  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations