Computational Particle Mechanics

, Volume 3, Issue 2, pp 263–276

A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores

  • Miguel Angel Celigueta
  • Kedar M. Deshpande
  • Salvador Latorre
  • Eugenio Oñate


We present a procedure for coupling the finite element method (FEM) and the discrete element method (DEM) for analysis of the motion of particles in non-Newtonian fluids. Particles are assumed to be spherical and immersed in the fluid mesh. A new method for computing the drag force on the particles in a non-Newtonian fluid is presented. A drag force correction for non-spherical particles is proposed. The FEM-DEM coupling procedure is explained for Eulerian and Lagrangian flows, and the basic expressions of the discretized solution algorithm are given. The usefulness of the FEM-DEM technique is demonstrated in its application to the transport of drill cuttings in wellbores.


FEM-DEM procedure Motion of particles Drill cuttings Wellbores 


  1. 1.
    Bourgoyne AT, Millheim KK, Chenevert ME, Young FS (1991) Applied drilling engineering. Society of Petroleum Engineers, RichardsonGoogle Scholar
  2. 2.
    Sifferman TR, Myers GM, Haden EL, Wahl HA (1974) Drill-cutting transport in full-scale vertical annuli. J Pet Technol 26:1–295CrossRefGoogle Scholar
  3. 3.
    Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Oñate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Part Mech 1:85–102CrossRefGoogle Scholar
  5. 5.
    Zohdi T (2007) An introduction to modelling and simulation of particulate flows., Computational science and engineeringSIAM, PhiladelphiaCrossRefMATHGoogle Scholar
  6. 6.
    Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093CrossRefGoogle Scholar
  7. 7.
    Franci A, Oñate E, Carbonell JM (2015) On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Accepted for publication in Int J Numer Methods Eng. doi:10.1002/nme.4839
  8. 8.
    Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767CrossRefMATHGoogle Scholar
  10. 10.
    Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004c) The particle finite element method—an overview. Int J Comput Methods 1(2):267–307CrossRefMATHGoogle Scholar
  11. 11.
    Oñate E, Celigueta MA, Idelsohn SR (2006a) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnia 1(4):237–252CrossRefGoogle Scholar
  12. 12.
    Oñate E, García J, Idelsohn SR, Del Pin F (2006c) FIC formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches. Comput Methods Appl Mech Eng 195(23–24):3001–3037CrossRefMATHGoogle Scholar
  13. 13.
    Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Oñate E (2009) Structural analysis with the finite element method, vol 1., Basis and solidsCIMNE-Springer, BarcelonaCrossRefMATHGoogle Scholar
  15. 15.
    Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48(3):307–318MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731MathSciNetCrossRefGoogle Scholar
  17. 17.
    Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79(1):7CrossRefGoogle Scholar
  18. 18.
    Cundall PA, Strack ODL (1979) A discrete numerical method for granular assemblies. Geotechnique 29:47–65CrossRefGoogle Scholar
  19. 19.
    Oñate E, Rojek J (2004b) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128CrossRefMATHGoogle Scholar
  20. 20.
    Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Ring KL (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160CrossRefGoogle Scholar
  21. 21.
    Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New YorkGoogle Scholar
  22. 22.
    Coussy O (2004) Poromechanics. Wiley, ChichesterMATHGoogle Scholar
  23. 23.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: the basis and fundamentals, 6th edn. Elsevier, AmsterdamGoogle Scholar
  24. 24.
    Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, SwanseaMATHGoogle Scholar
  25. 25.
    Belytschko T, Liu WK, Moran B (2013) Non linear finite element for continua and structures, 2nd edn. Wiley, New YorkGoogle Scholar
  26. 26.
    Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, ChichesterCrossRefGoogle Scholar
  27. 27.
    Jackson R (2000) The dynamics of fluidized particles. Cambridge monographs on mechanics. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. By SIAMUF, Swedish Industrial Association for Multiphase Flows, ERCOFTAC (2008)Google Scholar
  29. 29.
    Ansley RW, Smith TN (1967) Motion of spherical particles in a Bingham plastic. AIChE J 13(6):1193–1196CrossRefGoogle Scholar
  30. 30.
    Brookes GF, Whitmore RL (1969) Drag forces in Bingham plastics. Rheologica Acta 8(4):472–480CrossRefGoogle Scholar
  31. 31.
    Kelessidis VC, Mpandelis G (2004) Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids. Powder Technol 147:117–125CrossRefGoogle Scholar
  32. 32.
    Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281CrossRefGoogle Scholar
  33. 33.
    Shah SN, El Fadili Y, Chhabra RP (2007) New model for single spherical particle settling velocity in power law (visco-inelastic) fluids. Int J Multiph Flow 33:51–66CrossRefGoogle Scholar
  34. 34.
    Walker RE, Mayes TM (1975) Design of muds for carrying capacity. J Pet Technol 27(7):893CrossRefGoogle Scholar
  35. 35.
    Walker RE (1976) Hydraulics limits are set by flow restrictions. Oil Gas J 74:86–90Google Scholar
  36. 36.
    Haider A, Levespiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70CrossRefGoogle Scholar
  37. 37.
    Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60(1):255–281MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kratos (2015) Open source software platform for multiphysics computations. CIMNE, Barcelona,
  39. 39.
    GiD (2015) The personal pre/postprocessor., CIMNE, Barcelona
  40. 40.
    Breuer M, Rodi W (1994). Large-eddy simulation of turbulent flow through a straight square duct and a 180\(^{\circ }\) bend. In Fluid mechanics and its applications, Vol. 26, Voke PR, Kleiser L, Hollet JP (Eds.). Direct and large-eddy simulation I. Selected papers from the First ERCOFTAC workshop on direct and large-eddy simulation. Guildford, 27–30 Mar 1994. Kluwer Academic Publishers, Dordrecht, pp. 273–285Google Scholar
  41. 41.
    He X, Luo LS (1997) Lattice Boltzmann model for the incompressible NavierStokes equation. J Stat Phys 88(3–4):927–944MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574MathSciNetCrossRefGoogle Scholar

Copyright information

© OWZ 2015

Authors and Affiliations

  • Miguel Angel Celigueta
    • 1
  • Kedar M. Deshpande
    • 2
  • Salvador Latorre
    • 1
  • Eugenio Oñate
    • 1
  1. 1.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)BarcelonaSpain
  2. 2.Weatherford International Ltd.HoustonUSA

Personalised recommendations