Advertisement

Computational Particle Mechanics

, Volume 4, Issue 2, pp 181–198 | Cite as

A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery

  • Guillermo Casas
  • Debanjan Mukherjee
  • Miguel Angel Celigueta
  • Tarek I. Zohdi
  • Eugenio Onate
Article

Abstract

A modular discrete element framework is presented for large-scale simulations of industrial grain-handling systems. Our framework enables us to simulate a markedly larger number of particles than previous studies, thereby allowing for efficient and more realistic process simulations. This is achieved by partitioning the particle dynamics into distinct regimes based on their contact interactions, and integrating them using different time-steps, while exchanging phase-space data between them. The framework is illustrated using numerical experiments based on fertilizer spreader applications. The model predictions show very good qualitative and quantitative agreement with available experimental data. Valuable insights are developed regarding the role of lift vs drag forces on the particle trajectories in-flight, and on the role of geometric discretization errors for surface meshing in governing the emergent behavior of a system of particles.

Keywords

Discrete element method Contact Grain distribution Modular simulations Rotary spreaders 

Notes

Acknowledgments

We would like to acknowledge the kindness of Dr. Van Liedekerke from the Ecole Normale Superieure and Dr. Coetzee from University of Stellenbosch, who responded promptly to all our enquiries regarding their work.

References

  1. 1.
    Adam S, Suzzi D, Radeke C, Khinast JG (2011) An integrated quality by design (qbd) approach towards design space definition of a blending unit operation by discrete element method (dem) simulation. Eur J Pharm Sci 42(1):106–115CrossRefGoogle Scholar
  2. 2.
    Antypov D, Elliott JA (2011) On an analytical solution for the damped hertzian spring. EPL (Europhys Lett) 94(5):50004CrossRefGoogle Scholar
  3. 3.
    Aphale A, Bolander N, Park J, Shaw L, Svec J, Wassgren C (2003) Granular fertiliser particle dynamics on and off a spinner spreader. Biosyst Eng 85(3):319–329CrossRefGoogle Scholar
  4. 4.
    Cleary PW (1998) Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng 11(11):1061–1080CrossRefGoogle Scholar
  5. 5.
    Cleary PW (2001) Recent advances in dem modelling of tumbling mills. Miner Eng 14(10):1295–1319CrossRefGoogle Scholar
  6. 6.
    Coetzee CJ, Lombard SG (2011) Discrete element method modelling of a centrifugal fertiliser spreader. Biosyst Eng 109(4):308–325CrossRefGoogle Scholar
  7. 7.
    Cool S, Pieters J, Mertens KC, Hijazi B, Vangeyte J (2014) A simulation of the influence of spinning on the ballistic flight of spherical fertiliser grains. Comput Electron Agric 105:121–131CrossRefGoogle Scholar
  8. 8.
    Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2011) Multiphase flows with droplets and particles. CRC press, Boca RatonCrossRefGoogle Scholar
  9. 9.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297CrossRefzbMATHGoogle Scholar
  10. 10.
    Das S (2003) Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater 5(10):701–711CrossRefGoogle Scholar
  11. 11.
    Dennis SCR, Singh SN, Ingham DB (1980) The steady flow due to a rotating sphere at low and moderate reynolds numbers. J Fluid Mech 101(02):257–279CrossRefzbMATHGoogle Scholar
  12. 12.
    Dintwa E, Van Liedekerke P, Olieslagers R, Tijskens E, Ramon H (2004) Model for simulation of particle flow on a centrifugal fertiliser spreader. Biosyst Eng 87(4):407–415CrossRefGoogle Scholar
  13. 13.
    Duran J (2012) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New YorkGoogle Scholar
  14. 14.
    Farazmand M, Haller G (2015) The maxey-riley equation: existence, uniqueness and regularity of solutions. Nonlinear Anal: Real World Appl 22:98–106MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Feuillebois F, Lasek A (1978) On the rotational historic term in non-stationary stokes flow. Q J Mech Appl Math 31(4):435–443MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gouesbet G, Berlemont A (1999) Eulerian and lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energ Combust Sci 25(2):133–159CrossRefGoogle Scholar
  17. 17.
    Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58(1):63–70CrossRefGoogle Scholar
  18. 18.
    Hofstee JW (1995) Handling and spreading of fertilizers: part 5, the spinning disc type fertilizer spreader. J Agric Eng Res 62(3):143–162CrossRefGoogle Scholar
  19. 19.
    Höhner D, Wirtz S, Kruggel-Emden H, Scherer V (2011) Comparison of the multi-sphere and polyhedral approach to simulate non-spherical particles within the discrete element method: Influence on temporal force evolution for multiple contacts. Powder Technol 208(3):643–656CrossRefGoogle Scholar
  20. 20.
    Horner DA, Peters JF, Carrillo A (2001) Large scale discrete element modeling of vehicle-soil interaction. J Eng Mech 127(10):1027–1032CrossRefGoogle Scholar
  21. 21.
    Irazabal J (2015) Masters thesis: Numerical modelling of railway ballast using the discrete element methodGoogle Scholar
  22. 22.
    Johnson KL (1987) Contact mechanics. Cambridge university press, CambridgeGoogle Scholar
  23. 23.
    Ketterhagen WR, am Ende MT, Hancock BC (2009) Process modeling in the pharmaceutical industry using the discrete element method. J Pharm Sci 98(2):442–470CrossRefGoogle Scholar
  24. 24.
    Kim I, Elghobashi S, Sirignano WA (1998) On the equation for spherical-particle motion: effect of reynolds and acceleration numbers. J Fluid Mech 367:221–253MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource dem and cfd-dem. Prog Comput Fluid Dyn Int J 12(2–3):140–152MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kodam M, Curtis J, Hancock B, Wassgren C (2012) Discrete element method modeling of bi-convex pharmaceutical tablets: contact detection algorithms and validation. Chem Eng Sci 69(1):587–601CrossRefGoogle Scholar
  27. 27.
    Landau LD, Pitaevskii LP, Kosevich AM, Lifshitz M (1986) Theory of elasticity, 3rd edn., vol 7 (Course of theoretical physics), vol 1, 3rd edn. Butterworth-Heinemann,Google Scholar
  28. 28.
    Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids (1958–1988) 26(4):883–889CrossRefzbMATHGoogle Scholar
  29. 29.
    Mishra BK (2003) A review of computer simulation of tumbling mills by the discrete element method: Part II—practical applications. Int J Miner Proc 71(1):95–112CrossRefGoogle Scholar
  30. 30.
    Mishra BK (2003) A review of computer simulation of tumbling mills by the discrete element method: part I—contact mechanics. Int J Miner Proc 71(1):73–93CrossRefGoogle Scholar
  31. 31.
    Morrison RD, Cleary PW (2004) Using dem to model ore breakage within a pilot scale sag mill. Miner Eng 17(11):1117–1124CrossRefGoogle Scholar
  32. 32.
    Mukherjee D, Zohdi TI (2015) A discrete element based simulation framework to investigate particulate spray deposition processes. J Comput Phys 290:298–317MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Muzzio FJ, Shinbrot T, Glasser BJ (2002) Powder technology in the pharmaceutical industry: the need to catch up fast. Powder Technol 124(1):1–7CrossRefGoogle Scholar
  34. 34.
    Oesterle B, Bui Dinh T (1998) Experiments on the lift of a spinning sphere in a range of intermediate reynolds numbers. Exp Fluids 25(1):16–22CrossRefGoogle Scholar
  35. 35.
    O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng Comput 21(2/3/4):278–303CrossRefzbMATHGoogle Scholar
  36. 36.
    Patterson DE, Reece AR (1962) The theory of the centrifugal distributor. I: motion on the disc, near-centre feed. J Agric Eng Res 7(3):232–240Google Scholar
  37. 37.
    Perret-Liaudet J, Rigaud E (2006) Response of an impacting hertzian contact to an order-2 subharmonic excitation: theory and experiments. J Sound Vib 296(1):319–333CrossRefGoogle Scholar
  38. 38.
    Pöschel T, Schwager T (2005) Computational granular dynamics: models and algorithms. Springer, BerlinGoogle Scholar
  39. 39.
    Schwartz SR, Richardson DC, Michel P (2012) An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granul Matter 14(3):363–380CrossRefGoogle Scholar
  40. 40.
    Stronge WJ (2004) Impact mechanics. Cambridge university press, CambridgezbMATHGoogle Scholar
  41. 41.
    Thornton C, Cummins SJ, Cleary PW (2013) An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol 233:30–46CrossRefGoogle Scholar
  42. 42.
    Tijskens E, Ramon H, De Baerdemaeker J (2003) Discrete element modelling for process simulation in agriculture. J Sound Vib 266(3):493–514CrossRefGoogle Scholar
  43. 43.
    Van Hinsberg M, ten Thije J, ten Thije Boonkkamp J, Clercx H (2011) An efficient, second order method for the approximation of the basset history force. J Comput Phys 230(4):1465–1478CrossRefzbMATHGoogle Scholar
  44. 44.
    Van Liedekerke P, Tijskens E, Dintwa E, Anthonis J, Ramon H (2006) A discrete element model for simulation of a spinning disc fertilizer spreader I. Single particle simulations. Powder Technol 170(2):71–85CrossRefGoogle Scholar
  45. 45.
    Van Liedekerke P, Tijskens E, Dintwa E, Rioual F, Vangeyte J, Ramon H (2009) DEM simulations of the particle flow on a centrifugal fertilizer spreader. Powder Technol 190(3):348–360CrossRefGoogle Scholar
  46. 46.
    Van Liedekerke P, Tijskens E, Ramon H (2009) Discrete element simulations of the influence of fertiliser physical properties on the spread pattern from spinning disc spreaders. Biosyst Eng 102(4):392–405CrossRefGoogle Scholar
  47. 47.
    Van Liedekerke P, Piron E, Vangeyte J, Villette S, Ramon H, Tijskens E (2008) Recent results of experimentation and DEM modeling of centrifugal fertilizer spreading. Granul Matter 10(4):247–255CrossRefGoogle Scholar
  48. 48.
    Villette S, Cointault F, Piron E, Chopinet B (2005) Centrifugal spreading: an analytical model for the motion of fertiliser particles on a spinning disc. Biosyst Eng 92(2):157–164CrossRefGoogle Scholar
  49. 49.
    Yan X, Gu P (1996) A review of rapid prototyping technologies and systems. Computer-Aided Des 28(4):307–318MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ye H, Liu XY, Hong H (2008) Fabrication of metal matrix composites by metal injection moldinga review. J Mater Proc Technol 200(1):12–24CrossRefGoogle Scholar
  51. 51.
    Zhu HP, Zhou ZY, Yang RY, Yu AB (2008) Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 63(23):5728–5770CrossRefGoogle Scholar
  52. 52.
    Zohdi TI (2007) An introduction to modeling and simulation of particulate flows, vol 4. Siam, PhiladelphiaCrossRefzbMATHGoogle Scholar

Copyright information

© OWZ 2015

Authors and Affiliations

  • Guillermo Casas
    • 1
  • Debanjan Mukherjee
    • 2
  • Miguel Angel Celigueta
    • 1
  • Tarek I. Zohdi
    • 2
  • Eugenio Onate
    • 1
  1. 1.International Center for Numerical Methods in Engineering (CIMNE)Universitat Politecnica de CatalunyaBarcelonaSpain
  2. 2.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations