Computational Particle Mechanics

, Volume 3, Issue 2, pp 167–178 | Cite as

Three-dimensional simulations of dilute and concentrated suspensions using smoothed particle hydrodynamics

  • Adolfo Vázquez-QuesadaEmail author
  • Xin Bian
  • Marco Ellero


A three-dimensional model for a suspension of rigid spherical particles in a Newtonian fluid is presented. The solvent is modeled with smoothed particle hydrodynamics method, which takes into account exactly the long-range multi-body hydrodynamic interactions between suspended spheres. Short-range lubrication forces which are necessary to simulate concentrated suspensions, are introduced pair-wisely based on the analytical solution of Stokes equations for approaching/departing objects. Given that lubrication is singular at vanishing solid particle separations, an implicit splitting integration scheme is used to obtain accurate results and at the same time to avoid prohibitively small simulation time steps. Hydrodynamic interactions between solid particles, at both long-range and short-range limits, are verified against theory in the case of two approaching spheres in a quiescent medium and under bulk shear flow, where good agreements are obtained. Finally, numerical results for the suspension viscosity of a many-particle system are shown and compared with analytical solutions available in the dilute and semi-dilute case as well as with previous numerical results obtained in the concentrated limit.


Smoothed particle hydrodynamics  Complex fluids Non-colloidal particles  Suspension rheology 



LRZ’s support for providing computing time on HPC system SuperMUC within the project “Multiscale Modelling of Particles in Suspension” (ID: pr58ye) is gratefully acknowledged. The authors also appreciate the useful discussions with Sergey Litvinov and his help calculating the Batchelor trajectories.


  1. 1.
    Mewis J, Wagner NJ (2011) Colloidal suspension rheology. Cambridge University Press, Cambridge Books OnlineGoogle Scholar
  2. 2.
    Maitland G (2000) Oil and gas production. Curr Opin Colloid Interface Sci 5(5):301–311CrossRefGoogle Scholar
  3. 3.
    Bian X, Ellero M (2014) A splitting integration scheme for the SPH simulation of concentrated particle suspensions. Comput Phys Commun 185(1):53–62MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brady JF, Bossis G (1988) Stokesian dynamics. Annu Rev Fluid Mech 20:111–157CrossRefGoogle Scholar
  5. 5.
    Sierou A, Brady JF (2001) Accelerated Stokesian dynamics simulations. J Fluid Mech 448:115–146zbMATHGoogle Scholar
  6. 6.
    Kutteh R (2010) Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles. J Chem Phys 132(17):174107CrossRefGoogle Scholar
  7. 7.
    Swan JW, Brady JF (2007) Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys Fluids 19(11):113306CrossRefzbMATHGoogle Scholar
  8. 8.
    Schaink HM, Slot JJM, Jongschaap RJJ, Mellema J (2000) The rheology of systems containing rigid spheres suspended in both viscous and viscoelastic media, studied by Stokesian dynamics simulations. J Rheol 44(3):473–498CrossRefGoogle Scholar
  9. 9.
    Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Owen DRJ, Leonardi CR, Feng YT (2011) An efficient framework for fluid-structure interaction using the lattice Boltzmann method and immersed moving boundaries. Int J Numer Methods in Eng 87(1–5):66–95MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koch DL, Ladd AJ (1997) Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J Fluid Mech 349:31–66MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hoef MVD, Beetstra R, Kuipers J (2005) Lattice-Boltzmann simulations of low-Reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force. J Fluid Mech 528:233–254MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pan C, Luo LS, Miller CT (2006) An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35(8):898–909CrossRefzbMATHGoogle Scholar
  14. 14.
    Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particulate flows. J Comput Phys 209(2):448–476MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Usabiaga FB, Pagonabarraga I, Delgado-Buscalioni R (2013) Inertial coupling for point particle fluctuating hydrodynamics. J Comput Phys 235:701–722MathSciNetCrossRefGoogle Scholar
  16. 16.
    Vázquez-Quesada A, Usabiaga FB, Delgado-Buscalioni R (2014) A multiblob approach to colloidal hydrodynamics with inherent lubrication. J Chem Phys 141(20):204102CrossRefGoogle Scholar
  17. 17.
    Pan W, Caswell B, Karniadakis GE (2009) Rheology, microstructure and migration in Brownian colloidal suspensions. Langmuir 26(1):133–142CrossRefGoogle Scholar
  18. 18.
    Boek E, Coveney P, Lekkerkerker H (1996) Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys: Condens Matter 8(47):9509Google Scholar
  19. 19.
    Boek E, Coveney P, Lekkerkerker H, van der Schoot P (1997) Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55(3):3124CrossRefGoogle Scholar
  20. 20.
    Moshfegh A, Jabbarzadeh A (2015) Dissipative particle dynamics: effects of parameterization and thermostating schemes on rheology. Soft Mater 13(2):106–117CrossRefGoogle Scholar
  21. 21.
    Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sbalzarini I, Walther J, Bergdorf M, Hieber S, Kotsalis E, Koumoutsakos P (2006) PPM-A highly efficient parallel particle-mesh library for the simulation of continuum systems. J Comput Phys 215(2):566–588CrossRefzbMATHGoogle Scholar
  23. 23.
    Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026705CrossRefGoogle Scholar
  24. 24.
    Vázquez-Quesada A, Ellero M, Español P (2009) Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J Chem Phys 130(3):034901CrossRefGoogle Scholar
  25. 25.
    Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E 56(6):6620MathSciNetCrossRefGoogle Scholar
  26. 26.
    Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bian X, Litvinov S, Qian R, Ellero M, Adams NA (2012) Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys Fluids 24(1):012002CrossRefGoogle Scholar
  28. 28.
    Kulkarni PM, Fu CC, Shell MS, Gary Leal L (2013) Multiscale modeling with smoothed dissipative particle dynamics. J Chem Phys 138(23):234105.
  29. 29.
    Bian X, Litvinov S, Ellero M, Wagner NJ (2014) Hydrodynamic shear thickening of particulate suspension under confinement. J Non-Newton Fluid Mech 213:39–49CrossRefGoogle Scholar
  30. 30.
    Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRefzbMATHGoogle Scholar
  31. 31.
    Hu X, Adams N (2006) Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys Fluids 18(10):101702CrossRefGoogle Scholar
  32. 32.
    Müller K, Fedosov DA, Gompper G (2015) Smoothed dissipative particle dynamics with angular momentum conservation. J Comput Phys 281:301–315MathSciNetCrossRefGoogle Scholar
  33. 33.
    Götze IO, Noguchi H, Gompper G (2007) Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. Phys Rev E 76(4):046705CrossRefGoogle Scholar
  34. 34.
    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406CrossRefzbMATHGoogle Scholar
  35. 35.
    Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Henemann, BostonGoogle Scholar
  36. 36.
    Nguyen NQ, Ladd A (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046708CrossRefGoogle Scholar
  37. 37.
    Melrose J, Ball R (1995) The pathological behaviour of sheared hard spheres with hydrodynamic interactions. EPL (Europhysics Letters) 32(6):535CrossRefGoogle Scholar
  38. 38.
    Ball R, Melrose J (1995) Lubrication breakdown in hydrodynamic simulations of concentrated colloids. Adv Colloid Interface Sci 59:19–30CrossRefGoogle Scholar
  39. 39.
    Dratler D, Schowalter W (1996) Dynamic simulation of suspensions of non-Brownian hard spheres. J Fluid Mech 325:53–77CrossRefzbMATHGoogle Scholar
  40. 40.
    Brady JF, Morris JF (1997) Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139CrossRefzbMATHGoogle Scholar
  41. 41.
    Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J Fluid Mech 155:105–129CrossRefGoogle Scholar
  42. 42.
    Batchelor G, Green JT (1972) The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J Fluid Mech 56(02):375–400CrossRefzbMATHGoogle Scholar
  43. 43.
    Jeffrey D, Onishi Y (1984) Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J Fluid Mech 139:261–290CrossRefzbMATHGoogle Scholar
  44. 44.
    Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik 324(2):289–306CrossRefzbMATHGoogle Scholar
  45. 45.
    Batchelor G, Green JT (1972) The determination of the bulk stress in a suspension of spherical particles to order \(\text{ c }^2\). J Fluid Mech 56(03):401–427CrossRefzbMATHGoogle Scholar
  46. 46.
    Sierou A, Brady J (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46(5):1031–1056CrossRefGoogle Scholar
  47. 47.
    Bertevas E, Fan X, Tanner RI (2010) Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid. Rheologica Acta 49(1):53–73CrossRefGoogle Scholar
  48. 48.
    Vázquez-Quesada A, Ellero M, Español P (2012) A SPH-based particle model for computational microrheology. Microfluid Nanofluid 13(2):249–260CrossRefGoogle Scholar
  49. 49.
    Chen S, Phan-Thien N, Khoo BC, Fan XJ (2006) Flow around spheres by dissipative particle dynamics. Phys Fluids 18(10):103605MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© OWZ 2015

Authors and Affiliations

  • Adolfo Vázquez-Quesada
    • 1
    Email author
  • Xin Bian
    • 2
  • Marco Ellero
    • 1
  1. 1.Zienkiewicz Centre for Computational Engineering (ZCCE) Swansea UniversitySwanseaUK
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations