Information Technology & Tourism

, Volume 14, Issue 4, pp 317–346 | Cite as

Development of a mobile toolkit to support research on human mobility behavior using GPS trajectories

  • Thomas Spangenberg
Original Research
Part of the following topical collections:
  1. ICT for Sustainable Tourism


GPS tracking is a common empirical research method to gain information about human mobility behavior. Based on the recorded GPS trajectories it is possible to analyze and explain motion spatially, and temporally. More comprehensive explanations of specific movement patterns require the coupling with other survey techniques such as trip diaries, interviews, and questionnaires, which are widespread data acquisition methods in tourism research. However, GPS-based surveys require a high effort in the preparation and post-processing of the data, and expertise in both, information technologies and tourism research. In order to prepare the data for the analysis in geographic information systems a number of steps with different tools is necessary. In this paper the GimToP Toolkit (GTK) is presented that integrates the methodological approach and the technology in an easy-to-handle manner. The GTK combines trajectory data with digital questionnaires based on a mobile application that is used for the data collection and preprocessing tasks. Connected to a server, which offers a service-oriented architecture, the GTK has the ability to process the survey data and to provide interoperability for the analysis in other applications. This paper presents the components of the GTK and shows its usage during two field studies, which are carried out in the city of Wernigerode and the Harz National Park in Germany. The results offer new insights in the movement behavior of the tourists and can be used to support a more sustainable development of the destinations.


GPS tracking Tourist mobility behavior Trajectory analysis Mobile systems Geographic information systems 


  1. Alvares LO, Vania B, Bart K, de Macedo JAF, Bart M, Alejandro V (2007) A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th annual ACM international symposium on advances in geographic information systems, Seattle, Washington, 22:1–22:8Google Scholar
  2. Bauder M (2011) GPS-Erfassung und GIS-Analyse individueller Personenmobilität. Master’s thesis, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  3. Blichfeldt BS (2008) What to do on our holiday: the case of in situ decision-making. Anatolia Int J Tour Hosp Res 19(2):287–305Google Scholar
  4. Butler H, Martin D, Allan D, Sean G, Tim S, Christopher S (2008) The GeoJSON Format Specification. Accessed 11 Oct 2013
  5. Dodge M, McDerby M, Turner M (2008) The power of geographical visualizations. In: Dodge M, McDerby M, Turner M (eds.) Geographic visualization: concepts, tools and applications. John Wiley and Sons, Ltd, ChichesterGoogle Scholar
  6. Edwards D, Griffin T, Hayllar B, Dickson T, Schweinsberg S (2009) Understanding tourist experiences and behaviour in cities: an Australian case study. CRC for Sustainable Tourism Pty LtdGoogle Scholar
  7. Fennell DA (1996) A tourist space-time budget in the Shetland Islands. Ann Tour Res 23(4):811–829CrossRefGoogle Scholar
  8. Galí N, Donaire JA (2010) Direct observation as a methodology for effectively defining tourist behaviour. In: ENTER 2010: Volume 1 Short Papers. Accessed 07 Oct 2013
  9. GDAL (2013) Geospatial Data Abstraction Library. Accessed 14 Oct 2013
  10. Geofabrik (2013) OpenStreetMap data extracts. Accessed 16 Oct 2013
  11. GPX (2004) GPX: the GPS exchange format. Accessed 12 Oct 2013
  12. Groß MS, Groß S, Freyer W (2006) Mobilitätsverhalten im Tourismus: Methodenstudie zur Erfassung des Mobilitätsverhaltens von Touristen am Aufenthaltsort. Zeitschrift Verkehrswissenschaft 77(1):29–55Google Scholar
  13. Hartmann R (1988) Combining field methods in tourism research. Ann Tour Res 15(1):88–105CrossRefGoogle Scholar
  14. Huang H, Gartner G (2012) Using context-aware collaborative filtering for POI recommendations in mobile guides. In: Gartner G, Ortag F (eds) Advances in location-based services, Lecture Notes in geoinformation and cartography. Springer, Berlin Heidelberg, pp 131–147Google Scholar
  15. Lau G, McKercher B (2007) Understanding tourist movement patterns in a destination: a GIS approach. Tour Hosp Res 7(1):39–49CrossRefGoogle Scholar
  16. Mapnik (2013) Mapnik. Accessed 16 Oct 2013
  17. McKercher B, Shoval N, Ng E, Birenboim A (2012) First and repeat visitor behaviour: GPS tracking and GIS analysis in Hong Kong. Tour Geogr 14(1):147–161CrossRefGoogle Scholar
  18. Michael K, McNamee A, Michael MG (2006) The emerging ethics of humancentric GPS tracking and monitoring. In: Proceedings of the International Conference on Mobile Business, 34Google Scholar
  19. Millonig A, Gartner G (2007) Monitoring pedestrian spatio-temporal behaviour. In: Proceedings of the Workshop on Behaviour Monitoring and Interpretation, 29–42Google Scholar
  20. mQuest (2013) Mobile market research with mQuest survey software. Accessed 16 Oct 2013
  21. Murphy PE, Rosenblood L (1974) Tourism: an exercise in spatial search. Canadian Geogr Géogr Canadien 18(3):201–210CrossRefGoogle Scholar
  22. Nielsen NC, Blichfeldt BS (2009) Where do they go? Monitoring tourist mobility at the destination. In: 18th Nordic Symposium in Tourism and Hospitality ResearchGoogle Scholar
  23. OGC (2006) Web Map Service. Accessed 16 Oct 2013
  24. Orellana D, Bregt AK, Ligtenberg A, Wachowicz M (2012) Exploring visitor movement patterns in natural recreational areas. Tour Manag 33(3):672–682CrossRefGoogle Scholar
  25. OSM (2013) Map features. Accessed 16 Oct 2013
  26. Pearce DG (1988) Tourist time-budgets. Ann Tour Res 15:106–121CrossRefGoogle Scholar
  27. Pebesma E (2013) Analyzing Envirocar trajectory data with R. Accessed 21 Oct 2013
  28. PostGIS (2013) Spatial and Geographic objects for PostgreSQL. Accessed 10 Oct 2013
  29. R (2013) The R Project for statistical computing. Accessed 01 Oct 2013
  30. Ritalahti J, Konttinen A (2013) Tourism streams and mobility in Uusimaa Region in Southern Finland. In: ENTER 2013: Volume 4 Short Papers. Accessed 08 Oct 2013
  31. Rushikeshbhai DN (2009) Mapping spatial behavioural risk in Port Campbell National Park. Master’s thesis, RMIT UniversityGoogle Scholar
  32. Shoval N, Isaacson M (2009) Tourist mobility and advanced tracking technologies. RoutledgeGoogle Scholar
  33. Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146CrossRefGoogle Scholar
  34. Spangenberg T (2013) Standardization, modeling and implementation of points of interest—a touristic perspective. Int J u- e-Serv Sci Technol 6(6):59–70CrossRefGoogle Scholar
  35. The Data Republic (2011) The Flickr tourism indicator. Accessed 07 Oct 2013
  36. Tussyadiah IP, Daniel RF, Yoo Y (2008) Designing interactions in tourism mediascape—identification of patterns for Mobile 2.0 Platform. In: O’Connor P, Höpken W, Gretzel U (eds.) ENTER 2008: Information and communication technologies in tourism. Springer Vienna, 395–406Google Scholar
  37. Voelcker J (2006) Stalked by satellite—an alarming rise in GPS-enabled harassment. IEEE Spectr 43(7):15–16CrossRefGoogle Scholar
  38. Weber H-JL, Bauder M (2013) Neue Methoden der Mobilitatsanalyse: die Verbindung von GPS-Tracking mit quantitativen und qualitativen Methoden im Kontext des Tourismus. Raumforsch Raumordn 71(2):99–113CrossRefGoogle Scholar
  39. Zeni N, Kiyavitskaya N, Barbera S, Oztaysi B, Mich L (2009) RFID-based action tracking for measuring the impact of cultural events on tourism. In: Wolfram H, Gretzel U, Law R (eds.) ENTER 2009: information and communication technologies in tourism. Springer Vienna, 223–235Google Scholar
  40. Zheng Y, Zhou X (2011) Computing with spatial trajectories, SpringerGoogle Scholar
  41. Zheng Y, Chen Y, Xie X, Ma W-Y (2009) GeoLife2.0: a location-based social networking service. In: Proceedings of the 2009 Tenth International Conference on mobile data management: systems, services and middleware, MDM’09. IEEE Computer Society, Washington, 357–358Google Scholar
  42. Zheng VW, Zheng Y, Xie X, Yang Q (2012) Towards mobile intelligence: learning from GPS history data for collaborative recommendation. Artif Intell 184–185:17–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Automation and Computer ScienceHarz University of Applied SciencesWernigerodeGermany

Personalised recommendations