Advertisement

Pharmacogenomics as a Tool for Management of Drug Hypersensitivity Reactions

  • Natalia Pérez-Sánchez
  • Raquel Jurado-Escobar
  • Inmaculada Doña
  • Víctor Soriano-Gomis
  • Carmen Moreno-Aguilar
  • Joan Bartra
  • María Isidoro-García
  • María José Torres
  • José Antonio  Cornejo-GarcíaEmail author
Drug Allergy (L Mayorga, Section Editor)
  • 11 Downloads
Part of the following topical collections:
  1. Topical Collection on Drug Allergy

Abstract

Purpose of review

Drug hypersensitivity reactions constitute an unpredictable, serious problem for health care systems as they interfere with drug treatment, limit therapeutic options, and may be life-threatening. In addition to specific patient factors, they are also influenced by a genetic component. Indeed, a considerable body of knowledge supports the participation of genetic variants in their underlying mechanisms.

Recent findings

Latest research on this topic confirms the involvement of specific HLA alleles in non-immediate reactions. Two well-known examples are the HLA-B*58:01 allele in severe allopurinol-triggered reactions, and the HLA-B*15:02 allele in carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. However, there is a lack of reliable genetic markers for immediate reactions and for hypersensitivity to NSAIDs.

Summary

We summarize available information on the genetics of drug hypersensitivity reactions, highlighting regulatory agencies recommendations when available. We include some comments about new technological tools that should be implemented in the study of these reactions.

Keywords

Drug hypersensitivity reactions Immediate and non-immediate reactions NSAIDs Polymorphisms HLA alleles Genetic testing 

Notes

Acknowledgements

We thank Ms. Claudia Corazza for her help with the English version of the manuscript.

Funding

This work was supported by grants co-funded by the European Regional Development Fund (ERDF), from the Carlos III National Health Institute (ARADyAL network RD16/0006/0001, RD16/0006/0007, RD16/0006/00018, and RD16/0006/00019; and PI17/01593). I Doña is a researcher from the Juan Rodés Program (Ref JR15/0036), N Pérez-Sanchez from the Rio Hortega Program (Ref CM17/00141, respectively), and JA Cornejo-García from the Miguel Servet Program (Ref CP14/00034), all from the Carlos III National Health Institute, Spanish Ministry of Economy and Competitiveness).

Compliance with Ethical Standards

Conflict of Interest

Natalia Pérez-Sánchez declares that she has no conflict of interest. Raquel Jurado-Escobar declares that she has no conflict of interest. Inmaculada Doña declares that she has no conflict of interest. Víctor Soriano-Gomís declares that he has no conflict of interest. Carmen Moreno-Aguilar declares that she has no conflict of interest. Joan Bartra declares that she has no conflict of interest. María Isidoro-García declares that she has no conflict of interest. María José Torres declares that she has no conflict of interest. José Antonio Cornejo-García declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    International drug monitoring: the role of national centres. Report of a WHO meeting. World Health Organ Tech Rep Ser. 1972;498:1–25.Google Scholar
  2. 2.
    Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356:1255–9.  https://doi.org/10.1016/S0140-6736(00)02799-9.CrossRefPubMedGoogle Scholar
  3. 3.
    Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56:813–24.CrossRefGoogle Scholar
  4. 4.
    Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: report of the nomenclature review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113:832–6.  https://doi.org/10.1016/j.jaci.2003.12.591.CrossRefPubMedGoogle Scholar
  5. 5.
    Blanca M, Romano A, Torres MJ, Fernandez J, Mayorga C, Rodriguez J, et al. Update on the evaluation of hypersensitivity reactions to betalactams. Allergy. 2009;64:183–93.  https://doi.org/10.1111/j.1398-9995.2008.01916.x.CrossRefPubMedGoogle Scholar
  6. 6.
    Roujeau JC, Haddad C, Paulmann M, Mockenhaupt M. Management of nonimmediate hypersensitivity reactions to drugs. Immunol Allergy Clin N Am. 2014;34:473–87, vii.  https://doi.org/10.1016/j.iac.2014.04.012.
  7. 7.
    Torres MJ, Montanez MI, Ariza A, Salas M, Fernandez TD, Barbero N, et al. The role of IgE recognition in allergic reactions to amoxicillin and clavulanic acid. Clin Exp Allergy. 2016;46:264–74.  https://doi.org/10.1111/cea.12689.CrossRefPubMedGoogle Scholar
  8. 8.
    Cornejo-Garcia JA, Blanca-Lopez N, Dona I, Andreu I, Agundez JA, Carballo M, et al. Hypersensitivity reactions to non-steroidal anti-inflammatory drugs. Curr Drug Metab. 2009;10:971–80.CrossRefGoogle Scholar
  9. 9.
    Saff RR, Li Y, Santhanakrishnan N, Camargo CA Jr, Blumenthal KG, Zhou L, et al. Identification of inpatient allergic drug reactions using ICD-9-CM codes. J Allergy Clin Immunol Pract. 2018;7:259–264.e1.  https://doi.org/10.1016/j.jaip.2018.07.022.CrossRefPubMedGoogle Scholar
  10. 10.
    Sousa-Pinto B, Araujo L, Freitas A, Delgado L. Hospitalizations in children with a penicillin allergy label: an assessment of healthcare impact. Int Arch Allergy Immunol. 2018;176:234–8.  https://doi.org/10.1159/000488857.CrossRefPubMedGoogle Scholar
  11. 11.
    Doña I, Barrionuevo E, Salas M, Cornejo-Garcia JA, Perkins JR, Bogas G, et al. Natural evolution in patients with nonsteroidal anti-inflammatory drug-induced urticaria/angioedema. Allergy. 2017;72:1346–55.  https://doi.org/10.1111/all.13147.CrossRefPubMedGoogle Scholar
  12. 12.
    Jurado-Escobar R, Perkins JR, Garcia-Martin E, Isidoro-Garcia M, Dona I, Torres MJ, et al. Update on the genetic basis of drug hypersensitivity reactions. J Investig Allergol Clin Immunol. 2017;27:336–45.  https://doi.org/10.18176/jiaci.0199.CrossRefPubMedGoogle Scholar
  13. 13.
    Lauschke VM, Ingelman-Sundberg M. The importance of patient-specific factors for hepatic drug response and toxicity. Int J Mol Sci. 2016;17.  https://doi.org/10.3390/ijms17101714.
  14. 14.
    Ariza A, Mayorga C, Fernandez TD, Barbero N, Martín-Serrano A, Pérez-Sala D, et al. Hypersensitivity reactions to β-lactams: relevance of hapten-protein conjugates. J Investig Allergol Clin Immunol. 2015;25(1):12–25.PubMedGoogle Scholar
  15. 15.
    •• Oussalah A, Mayorga C, Blanca M, Barbaud A, Nakonechna A, Cernadas J, et al. Genetic variants associated with drugs-induced immediate hypersensitivity reactions: a PRISMA-compliant systematic review. Allergy. 2016;71:443–62.  https://doi.org/10.1111/all.12821 This PRISMA-compliant systematic review described main difficulties to identify an appropriate genetic marker for immediate hypersensitivity reactions to drugs.CrossRefPubMedGoogle Scholar
  16. 16.
    Cornejo-Garcia JA, Gueant-Rodriguez RM, Torres MJ, Blanca-Lopez N, Tramoy D, Romano A, et al. Biological and genetic determinants of atopy are predictors of immediate-type allergy to betalactams, in Spain. Allergy. 2012;67:1181–5.  https://doi.org/10.1111/j.1398-9995.2012.02867.x.CrossRefPubMedGoogle Scholar
  17. 17.
    • Cornejo-Garcia JA, Romano A, Gueant-Rodriguez RM, Oussalah A, Blanca-Lopez N, Gaeta F, et al. A non-synonymous polymorphism in galectin-3 lectin domain is associated with allergic reactions to beta-lactam antibiotics. Pharmacogenomics J. 2016;16:79–82.  https://doi.org/10.1038/tpj.2015.24 This original manuscript associated immediate reactions to betalactams with variants in LGALS3, highlighting previous findings on the potential role of atopy in these reactions.CrossRefPubMedGoogle Scholar
  18. 18.
    Bursztejn AC, Romano A, Gueant-Rodriguez RM, Cornejo JA, Oussalah A, Chery C, et al. Allergy to betalactams and nucleotide-binding oligomerization domain (NOD) gene polymorphisms. Allergy. 2013;68:1076–80.  https://doi.org/10.1111/all.12196.CrossRefPubMedGoogle Scholar
  19. 19.
    Gueant-Rodriguez RM, Romano A, Beri-Dexheimer M, Viola M, Gaeta F, Gueant JL. Gene-gene interactions of IL13 and IL4RA variants in immediate allergic reactions to betalactam antibiotics. Pharmacogenet Genomics. 2006;16:713–9.  https://doi.org/10.1097/01.fpc.0000230409.00276.44.CrossRefPubMedGoogle Scholar
  20. 20.
    Gueant-Rodriguez RM, Gueant JL, Viola M, Tramoy D, Gaeta F, Romano A. Association of tumor necrosis factor-alpha -308G>A polymorphism with IgE-mediated allergy to betalactams in an Italian population. Pharmacogenomics J. 2008;8:162–8.  https://doi.org/10.1038/sj.tpj.6500456.CrossRefPubMedGoogle Scholar
  21. 21.
    Qiao HL, Yang J, Zhang YW. Relationships between specific serum IgE, cytokines and polymorphisms in the IL-4, IL-4Ralpha in patients with penicillins allergy. Allergy. 2005;60:1053–9.  https://doi.org/10.1111/j.1398-9995.2005.00816.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang J, Qiao HL, Dong ZM. Polymorphisms of IL-13 and IL-4-IL-13-SNPs in patients with penicillin allergies. Eur J Clin Pharmacol. 2005;61:803–9.  https://doi.org/10.1007/s00228-005-0047-1.CrossRefPubMedGoogle Scholar
  23. 23.
    Guglielmi L, Fontaine C, Gougat C, Avinens O, Eliaou JF, Guglielmi P, et al. IL-10 promoter and IL4-Ralpha gene SNPs are associated with immediate beta-lactam allergy in atopic women. Allergy. 2006;61:921–7.  https://doi.org/10.1111/j.1398-9995.2006.01067.x.CrossRefPubMedGoogle Scholar
  24. 24.
    Qiao HL, Wen Q, Gao N, Tian X, Jia LJ. Association of IL-10 level and IL-10 promoter SNPs with specific antibodies in penicillin-allergic patients. Eur J Clin Pharmacol. 2007;63:263–9.  https://doi.org/10.1007/s00228-006-0245-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Gao N, Qiao HL, Jia LJ, Tian X, Zhang YW. Relationships between specific serum IgE, IgG, IFN-gamma level and IFN-gamma, IFNR1 polymorphisms in patients with penicillin allergy. Eur J Clin Pharmacol. 2008;64:971–7.  https://doi.org/10.1007/s00228-008-0486-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Huang CZ, Yang J, Qiao HL, Jia LJ. Polymorphisms and haplotype analysis of IL-4Ralpha Q576R and I75V in patients with penicillin allergy. Eur J Clin Pharmacol. 2009;65:895–902.  https://doi.org/10.1007/s00228-009-0659-y.CrossRefPubMedGoogle Scholar
  27. 27.
    Ming L, Wen Q, Qiao HL, Dong ZM. Interleukin-18 and IL18 -607A/C and -137G/C gene polymorphisms in patients with penicillin allergy. J Int Med Res. 2011;39:388–98.  https://doi.org/10.1177/147323001103900206.CrossRefPubMedGoogle Scholar
  28. 28.
    Huang CZ, Zou D, Yang J, Qiao HL. Polymorphisms of STAT6 and specific serum IgE levels in patients with penicillin allergy. Int J Clin Pharmacol Ther. 2012;50:461–7.  https://doi.org/10.5414/CP201691.CrossRefPubMedGoogle Scholar
  29. 29.
    • Gueant JL, Romano A, Cornejo-Garcia JA, Oussalah A, Chery C, Blanca-Lopez N, et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol. 2015;135:253–9.  https://doi.org/10.1016/j.jaci.2014.07.047 Up to now the only GWAS published on immediate allergy to betalactams.CrossRefPubMedGoogle Scholar
  30. 30.
    Perkins JR, Acosta-Herrera M, Plaza-Seron MC, Jurado-Escobar R, Dona I, Garcia-Martin E, et al. Polymorphisms in CEP68 gene associated with risk of immediate selective reactions to non-steroidal anti-inflammatory drugs. Pharmacogenomics J. 2018.  https://doi.org/10.1038/s41397-018-0038-0.
  31. 31.
    Kim JH, Park BL, Cheong HS, Bae JS, Park JS, Jang AS, et al. Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma. PLoS One. 2010;5:e13818.  https://doi.org/10.1371/journal.pone.0013818.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cornejo-Garcia JA, Flores C, Plaza-Seron MC, Acosta-Herrera M, Blanca-Lopez N, Dona I, et al. Variants of CEP68 gene are associated with acute urticaria/angioedema induced by multiple non-steroidal anti-inflammatory drugs. PLoS One. 2014;9:e90966.  https://doi.org/10.1371/journal.pone.0090966.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Torres MJ, Mayorga C, Blanca M. Nonimmediate allergic reactions induced by drugs: pathogenesis and diagnostic tests. J Investig Allergol Clin Immunol. 2009;19(2):80–90.PubMedGoogle Scholar
  34. 34.
    •• Negrini S, Becquemont L. HLA-associated drug hypersensitivity and the prediction of adverse drug reactions. Pharmacogenomics. 2017;18:1441–57.  https://doi.org/10.2217/pgs-2017-0090 A nicely written paper describing the role of HLA alleles in drug hypersensitivity.CrossRefPubMedGoogle Scholar
  35. 35.
    Halevy S, Ghislain PD, Mockenhaupt M, Fagot JP, Bouwes Bavinck JN, Sidoroff A, et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol. 2008;58:25–32.  https://doi.org/10.1016/j.jaad.2007.08.036.CrossRefPubMedGoogle Scholar
  36. 36.
    Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N. Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet. 2011;12:118.  https://doi.org/10.1186/1471-2350-12-118.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics. 2008;18:99–107.  https://doi.org/10.1097/FPC.0b013e3282f3ef9c.CrossRefPubMedGoogle Scholar
  38. 38.
    Goncalo M, Coutinho I, Teixeira V, Gameiro AR, Brites MM, Nunes R, et al. HLA-B*58:01 is a risk factor for allopurinol-induced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol. 2013;169:660–5.  https://doi.org/10.1111/bjd.12389.CrossRefPubMedGoogle Scholar
  39. 39.
    •• Wu R, Cheng YJ, Zhu LL, Yu L, Zhao XK, Jia M, et al. Impact of HLA-B*58:01 allele and allopurinol-induced cutaneous adverse drug reactions: evidence from 21 pharmacogenetic studies. Oncotarget. 2016;7:81870–9.  https://doi.org/10.18632/oncotarget.13250 An excellent meta-analysis on allopurinol-induced cutaneous adverse reactions to drugs.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S, Schmid D, et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int. 2006;55:17–25.  https://doi.org/10.2332/allergolint.55.17.CrossRefPubMedGoogle Scholar
  41. 41.
    Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012;129:1562–9 e5.  https://doi.org/10.1016/j.jaci.2011.12.990.
  42. 42.
    Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486:554–8.  https://doi.org/10.1038/nature11147.CrossRefPubMedGoogle Scholar
  43. 43.
    • Ke CH, Chung WH, Tain YL, Huang YB, Wen YH, Chuang HY, et al. Utility of human leukocyte antigen-B*58:01 genotyping and patient outcomes. Pharmacogenet Genomics. 2018.  https://doi.org/10.1097/FPC.0000000000000359 An excellent study on the utility of B*58:01 testing.
  44. 44.
    • Park DJ, Kang JH, Lee JW, Lee KE, Wen L, Kim TJ, et al. Cost-effectiveness analysis of HLA-B5801 genotyping in the treatment of gout patients with chronic renal insufficiency in Korea. Arthritis Care Res (Hoboken). 2015;67:280–7.  https://doi.org/10.1002/acr.22409 An interesting cost-effectiveness analysis of B*58:01 genotyping in gout patients.CrossRefGoogle Scholar
  45. 45.
    Ko TM, Tsai CY, Chen SY, Chen KS, Yu KH, Chu CS, et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ. 2015;351:h4848.  https://doi.org/10.1136/bmj.h4848.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saokaew S, Tassaneeyakul W, Maenthaisong R, Chaiyakunapruk N. Cost-effectiveness analysis of HLA-B*5801 testing in preventing allopurinol-induced SJS/TEN in Thai population. PLoS One. 2014;9:e94294.  https://doi.org/10.1371/journal.pone.0094294.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    • Plumpton CO, Alfirevic A, Pirmohamed M, Hughes DA. Cost effectiveness analysis of HLA-B*58:01 genotyping prior to initiation of allopurinol for gout. Rheumatology (Oxford). 2017;56:1729–39.  https://doi.org/10.1093/rheumatology/kex253 A practical example of cost effectiveness analysis of genetic testing prior to initiation of drug treatment.CrossRefGoogle Scholar
  48. 48.
    Ke CH, Chung WH, Wen YH, Huang YB, Chuang HY, Tain YL, et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J Rheumatol. 2017;44:835–43.  https://doi.org/10.3899/jrheum.151476.CrossRefPubMedGoogle Scholar
  49. 49.
    Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, et al. Clinical pharmacogenetics implementation consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther. 2013;93:153–8.  https://doi.org/10.1038/clpt.2012.209.CrossRefPubMedGoogle Scholar
  50. 50.
    Saito Y, Stamp LK, Caudle KE, Hershfield MS, McDonagh EM, Callaghan JT, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for human leukocyte antigen B (HLA-B) genotype and allopurinol dosing: 2015 update. Clin Pharmacol Ther. 2016;99:36–7.  https://doi.org/10.1002/cpt.161.CrossRefPubMedGoogle Scholar
  51. 51.
    Tassaneeyakul W, Jantararoungtong T, Chen P, Lin PY, Tiamkao S, Khunarkornsiri U, et al. Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics. 2009;19:704–9.  https://doi.org/10.1097/FPC.0b013e328330a3b8.CrossRefPubMedGoogle Scholar
  52. 52.
    Cao ZH, Wei ZY, Zhu QY, Zhang JY, Yang L, Qin SY, et al. HLA-B*58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese. Pharmacogenomics. 2012;13:1193–201.  https://doi.org/10.2217/pgs.12.89.CrossRefPubMedGoogle Scholar
  53. 53.
    Dean L. Carbamazepine therapy and HLA genotype. In: Pratt V, McLeod H, Rubinstein W, Dean L, Kattman B, Malheiro A, editors. Medical Genetics Summaries; 2012.Google Scholar
  54. 54.
    Ferrell PB Jr, McLeod HL. Carbamazepine, HLA-B*1502 and risk of Stevens-Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics. 2008;9:1543–6.  https://doi.org/10.2217/14622416.9.10.1543.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen P, Lin JJ, Lu CS, Ong CT, Hsieh PF, Yang CC, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364:1126–33.  https://doi.org/10.1056/NEJMoa1009717.CrossRefPubMedGoogle Scholar
  56. 56.
    Ko TM, Chung WH, Wei CY, Shih HY, Chen JK, Lin CH, et al. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol. 2011;128:1266–76 e11.  https://doi.org/10.1016/j.jaci.2011.08.013.
  57. 57.
    Chung WH, Hung SI, Hong HS, Hsih MS, Yang LC, Ho HC, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428:486.  https://doi.org/10.1038/428486a.CrossRefPubMedGoogle Scholar
  58. 58.
    Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006;16:297–306.  https://doi.org/10.1097/01.fpc.0000199500.46842.4a.CrossRefPubMedGoogle Scholar
  59. 59.
    Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia. 2007;48:1015–8.  https://doi.org/10.1111/j.1528-1167.2007.01022.x.CrossRefPubMedGoogle Scholar
  60. 60.
    Hsiao YH, Hui RC, Wu T, Chang WC, Hsih MS, Yang CH, et al. Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci. 2014;73:101–9.  https://doi.org/10.1016/j.jdermsci.2013.10.003.CrossRefPubMedGoogle Scholar
  61. 61.
    Aggarwal R, Sharma M, Modi M, Garg VK, Salaria M. HLA-B * 1502 is associated with carbamazepine induced Stevens-Johnson syndrome in North Indian population. Hum Immunol. 2014;75:1120–2.  https://doi.org/10.1016/j.humimm.2014.09.022.CrossRefPubMedGoogle Scholar
  62. 62.
    Nguyen DV, Chu HC, Nguyen DV, Phan MH, Craig T, Baumgart K, et al. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy. 2015;5:68–77.  https://doi.org/10.5415/apallergy.2015.5.2.68.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics. 2008;9:1617–22.  https://doi.org/10.2217/14622416.9.11.1617.CrossRefPubMedGoogle Scholar
  64. 64.
    Ikeda H, Takahashi Y, Yamazaki E, Fujiwara T, Kaniwa N, Saito Y, et al. HLA class I markers in Japanese patients with carbamazepine-induced cutaneous adverse reactions. Epilepsia. 2010;51:297–300.  https://doi.org/10.1111/j.1528-1167.2009.02269.x.CrossRefPubMedGoogle Scholar
  65. 65.
    Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, et al. A marker for Stevens-Johnson syndrome ...: ethnicity matters. Pharmacogenomics J. 2006;6:265–8.  https://doi.org/10.1038/sj.tpj.6500356.CrossRefPubMedGoogle Scholar
  66. 66.
    Sukasem C, Chaichan C, Nakkrut T, Satapornpong P, Jaruthamsophon K, Jantararoungtong T, et al. Association between HLA-B alleles and carbamazepine-induced maculopapular exanthema and severe cutaneous reactions in Thai patients. J Immunol Res. 2018;2018:2780272–11.  https://doi.org/10.1155/2018/2780272.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    • Yip VL, Pirmohamed M. The HLA-A*31:01 allele: influence on carbamazepine treatment. Pharmgenomics Pers Med. 2017;10:29–38.  https://doi.org/10.2147/PGPM.S108598 An outstanding description of the role of the HLA-A*31:01 allele in the treatment with carbamazepine.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperaviciute D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364:1134–43.  https://doi.org/10.1056/NEJMoa1013297.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20:1034–41.  https://doi.org/10.1093/hmg/ddq537.CrossRefPubMedGoogle Scholar
  70. 70.
    Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, Chang PY, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J. 2014;14:281–8.  https://doi.org/10.1038/tpj.2013.40.CrossRefPubMedGoogle Scholar
  71. 71.
    Kim H, Chadwick L, Alzaidi Y, Picker J, Poduri A, Manzi S. HLA-A*31:01 and oxcarbazepine-induced DRESS in a patient with seizures and complete DCX deletion. Pediatrics. 2018;141:S434–S8.  https://doi.org/10.1542/peds.2017-1361.CrossRefPubMedGoogle Scholar
  72. 72.
    Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia. 2013;54:1307–14.  https://doi.org/10.1111/epi.12217.CrossRefPubMedGoogle Scholar
  73. 73.
    Chang CC, Ng CC, Too CL, Choon SE, Lee CK, Chung WH, et al. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a Malay population. Pharmacogenomics J. 2017;17:170–3.  https://doi.org/10.1038/tpj.2016.10.CrossRefPubMedGoogle Scholar
  74. 74.
    Chung WH, Chang WC, Lee YS, Wu YY, Yang CH, Ho HC, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312:525–34.  https://doi.org/10.1001/jama.2014.7859.CrossRefPubMedGoogle Scholar
  75. 75.
    McCormack M, Gui H, Ingason A, Speed D, Wright GEB, Zhang EJ, et al. Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients. Neurology. 2018;90:e332–e41.  https://doi.org/10.1212/WNL.0000000000004853.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    • Yampayon K, Sukasem C, Limwongse C, Chinvarun Y, Tempark T, Rerkpattanapipat T, et al. Influence of genetic and non-genetic factors on phenytoin-induced severe cutaneous adverse drug reactions. Eur J Clin Pharmacol. 2017;73:855–65.  https://doi.org/10.1007/s00228-017-2250-2 This original article described the influence of genetic and non-genetic factors in a group of patients suffering from phenytoin-induced SJS or DRESS.CrossRefPubMedGoogle Scholar
  77. 77.
    Tassaneeyakul W, Prabmeechai N, Sukasem C, Kongpan T, Konyoung P, Chumworathayi P, et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genomics. 2016;26:225–34.  https://doi.org/10.1097/FPC.0000000000000211.CrossRefPubMedGoogle Scholar
  78. 78.
    Su SC, Chen CB, Chang WC, Wang CW, Fan WL, Lu LY, et al. HLA alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin Pharmacol Ther. 2018.  https://doi.org/10.1002/cpt.1190.
  79. 79.
    Phillips EJ, Sukasem C, Whirl-Carrillo M, Muller DJ, Dunnenberger HM, Chantratita W, et al. Clinical pharmacogenetics implementation consortium guideline for HLA genotype and use of carbamazepine and oxcarbazepine: 2017 update. Clin Pharmacol Ther. 2018;103:574–81.  https://doi.org/10.1002/cpt.1004.CrossRefPubMedGoogle Scholar
  80. 80.
    Caudle KE, Rettie AE, Whirl-Carrillo M, Smith LH, Mintzer S, Lee MT, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C9 and HLA-B genotypes and phenytoin dosing. Clin Pharmacol Ther. 2014;96:542–8.  https://doi.org/10.1038/clpt.2014.159.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    An DM, Wu XT, Hu FY, Yan B, Stefan H, Zhou D. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a Han Chinese population. Epilepsy Res. 2010;92:226–30.  https://doi.org/10.1016/j.eplepsyres.2010.10.006.CrossRefPubMedGoogle Scholar
  82. 82.
    Shi YW, Min FL, Liu XR, Zan LX, Gao MM, Yu MJ, et al. Hla-B alleles and lamotrigine-induced cutaneous adverse drug reactions in the Han Chinese population. Basic Clin Pharmacol Toxicol. 2011;109:42–6.  https://doi.org/10.1111/j.1742-7843.2011.00681.x.CrossRefPubMedGoogle Scholar
  83. 83.
    •• Deng Y, Li S, Zhang L, Jin H, Zou X. Association between HLA alleles and lamotrigine-induced cutaneous adverse drug reactions in Asian populations: a meta-analysis. Seizure. 2018;60:163–71.  https://doi.org/10.1016/j.seizure.2018.06.024 An excellent recently published meta-analysis evaluating the role of HLA alleles on lamotrigine-induced cutaneous reactions.CrossRefPubMedGoogle Scholar
  84. 84.
    Koomdee N, Pratoomwun J, Jantararoungtong T, Theeramoke V, Tassaneeyakul W, Klaewsongkram J, et al. Association of HLA-A and HLA-B alleles with lamotrigine-induced cutaneous adverse drug reactions in the Thai population. Front Pharmacol. 2017;8:879.  https://doi.org/10.3389/fphar.2017.00879.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Fricke-Galindo I, Martinez-Juarez IE, Monroy-Jaramillo N, Jung-Cook H, Falfan-Valencia R, Ortega-Vazquez A, et al. HLA-A*02:01:01/-B*35:01:01/-C*04:01:01 haplotype associated with lamotrigine-induced maculopapular exanthema in Mexican Mestizo patients. Pharmacogenomics. 2014;15:1881–91.  https://doi.org/10.2217/pgs.14.135.CrossRefPubMedGoogle Scholar
  86. 86.
    Hetherington S, McGuirk S, Powell G, Cutrell A, Naderer O, Spreen B, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther. 2001;23:1603–14.CrossRefGoogle Scholar
  87. 87.
    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359:727–32.CrossRefGoogle Scholar
  88. 88.
    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet. 2002;359:1121–2.  https://doi.org/10.1016/S0140-6736(02)08158-8.CrossRefPubMedGoogle Scholar
  89. 89.
    Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics. 2004;14:335–42.CrossRefGoogle Scholar
  90. 90.
    •• Tangamornsuksan W, Lohitnavy O, Kongkaew C, Chaiyakunapruk N, Reisfeld B, Scholfield NC, et al. Association of HLA-B*5701 genotypes and abacavir-induced hypersensitivity reaction: a systematic review and meta-analysis. J Pharm Pharm Sci. 2015;18:68–76 A nicely written systematic review and meta-analysis evaluating the role of HLA-B*5701 genotypes in abacavir-induced hypersensitivity reactions.CrossRefGoogle Scholar
  91. 91.
    Stekler J, Maenza J, Stevens C, Holte S, Malhotra U, McElrath MJ, et al. Abacavir hypersensitivity reaction in primary HIV infection. AIDS. 2006;20:1269–74.  https://doi.org/10.1097/01.aids.0000232234.19006.a2.CrossRefPubMedGoogle Scholar
  92. 92.
    Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, et al. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis. 2008;46:1111–8.  https://doi.org/10.1086/529382.CrossRefPubMedGoogle Scholar
  93. 93.
    Moragas M, Belloso WH, Baquedano MS, Gutierrez MI, Bissio E, Larriba JM, et al. Prevalence of HLA-B*57:01 allele in Argentinean HIV-1 infected patients. Tissue Antigens. 2015;86:28–31.  https://doi.org/10.1111/tan.12575.CrossRefPubMedGoogle Scholar
  94. 94.
    Arrieta-Bolanos E, Madrigal JA, Marsh SG, Shaw BE, Salazar-Sanchez L. The frequency of HLA-B*57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Hum Immunol. 2014;75:1092–6.  https://doi.org/10.1016/j.humimm.2014.09.011.CrossRefPubMedGoogle Scholar
  95. 95.
    Small CB, Margolis DA, Shaefer MS, Ross LL. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis. 2017;17:256.  https://doi.org/10.1186/s12879-017-2331-y.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Park WB, Choe PG, Song KH, Lee S, Jang HC, Jeon JH, et al. Should HLA-B*5701 screening be performed in every ethnic group before starting abacavir? Clin Infect Dis. 2009;48:365–7.  https://doi.org/10.1086/595890.CrossRefPubMedGoogle Scholar
  97. 97.
    Martin MA, Klein TE, Dong BJ, Pirmohamed M, Haas DW, Kroetz DL, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin Pharmacol Ther. 2012;91:734–8.  https://doi.org/10.1038/clpt.2011.355.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Martin MA, Hoffman JM, Freimuth RR, Klein TE, Dong BJ, Pirmohamed M, et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing: 2014 update. Clin Pharmacol Ther. 2014;95:499–500.  https://doi.org/10.1038/clpt.2014.38.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Carr DF, Chaponda M, Cornejo Castro EM, Jorgensen AL, Khoo S, Van Oosterhout JJ, et al. CYP2B6 c.983T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J Antimicrob Chemother. 2014;69:3329–34.  https://doi.org/10.1093/jac/dku315.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ciccacci C, Rufini S, Mancinelli S, Buonomo E, Giardina E, Scarcella P, et al. A pharmacogenetics study in Mozambican patients treated with nevirapine: full resequencing of TRAF3IP2 gene shows a novel association with SJS/TEN susceptibility. Int J Mol Sci. 2015;16:5830–8.  https://doi.org/10.3390/ijms16035830.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kowalski ML, Asero R, Bavbek S, Blanca M, Blanca-Lopez N, Bochenek G, et al. Classification and practical approach to the diagnosis and management of hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy. 2013;68:1219–32.  https://doi.org/10.1111/all.12260.CrossRefPubMedGoogle Scholar
  102. 102.
    Sladek K, Szczeklik A. Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur Respir J. 1993;6:391–9.PubMedGoogle Scholar
  103. 103.
    Gomez F, Perkins JR, Garcia-Martin E, Canto G, Cornejo-Garcia JA. Genetic basis of hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Curr Opin Allergy Clin Immunol. 2015;15:285–93.  https://doi.org/10.1097/ACI.0000000000000178.CrossRefPubMedGoogle Scholar
  104. 104.
    Doña I, Blanca-Lopez N, Torres MJ, Garcia-Campos J, Garcia-Nunez I, Gomez F, et al. Drug hypersensitivity reactions: response patterns, drug involved, and temporal variations in a large series of patients. J Investig Allergol Clin Immunol. 2012;22:363–71.PubMedGoogle Scholar
  105. 105.
    • Llanora GV, Loo EX, Gerez IF, Cheng YK, Shek LP. Etoricoxib: a safe alternative for NSAID intolerance in Asian patients. Asian Pac J Allergy Immunol. 2013;31:330–3.  https://doi.org/10.12932/AP0290.31.4.2013 An original article corroborating that NIUA is the most frequent entity induced by NSAIDs-hypersensitivity.CrossRefPubMedGoogle Scholar
  106. 106.
    Thong BY. Nonsteroidal anti-inflammatory drug hypersensitivity in the Asia-Pacific. Asia Pac Allergy. 2018;8:e38.  https://doi.org/10.5415/apallergy.2018.8.e38.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ayuso P, Plaza-Seron Mdel C, Blanca-Lopez N, Dona I, Campo P, Canto G, et al. Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics. 2015;16:825–39.  https://doi.org/10.2217/pgs.15.43.CrossRefPubMedGoogle Scholar
  108. 108.
    Sampson AP, Cowburn AS, Sladek K, Adamek L, Nizankowska E, Szczeklik A, et al. Profound overexpression of leukotriene C4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int Arch Allergy Immunol. 1997;113:355–7.  https://doi.org/10.1159/000237600.CrossRefPubMedGoogle Scholar
  109. 109.
    Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest. 1998;101:834–46.  https://doi.org/10.1172/JCI620.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol. 2000;23:290–6.  https://doi.org/10.1165/ajrcmb.23.3.4051.CrossRefPubMedGoogle Scholar
  111. 111.
    Van Sambeek R, Stevenson DD, Baldasaro M, Lam BK, Zhao J, Yoshida S, et al. 5′ Flanking region polymorphism of the gene encoding leukotriene C4 synthase does not correlate with the aspirin-intolerant asthma phenotype in the United States. J Allergy Clin Immunol. 2000;106:72–6.CrossRefGoogle Scholar
  112. 112.
    Kawagishi Y, Mita H, Taniguchi M, Maruyama M, Oosaki R, Higashi N, et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol. 2002;109:936–42.CrossRefGoogle Scholar
  113. 113.
    Choi JH, Park HS, Oh HB, Lee JH, Suh YJ, Park CS, et al. Leukotriene-related gene polymorphisms in ASA-intolerant asthma: an association with a haplotype of 5-lipoxygenase. Hum Genet. 2004;114:337–44.  https://doi.org/10.1007/s00439-004-1082-1.CrossRefPubMedGoogle Scholar
  114. 114.
    Isidoro-Garcia M, Davila I, Moreno E, Lorente F, Gonzalez-Sarmiento R. Analysis of the leukotriene C4 synthase A-444C promoter polymorphism in a Spanish population. J Allergy Clin Immunol. 2005;115:206–7.  https://doi.org/10.1016/j.jaci.2004.08.033.CrossRefPubMedGoogle Scholar
  115. 115.
    Cornejo-Garcia JA, Jagemann LR, Blanca-Lopez N, Dona I, Flores C, Gueant-Rodriguez RM, et al. Genetic variants of the arachidonic acid pathway in non-steroidal anti-inflammatory drug-induced acute urticaria. Clin Exp Allergy. 2012;42:1772–81.  https://doi.org/10.1111/j.1365-2222.2012.04078.x.CrossRefPubMedGoogle Scholar
  116. 116.
    Vidal C, Porras-Hurtado L, Cruz R, Quiralte J, Cardona V, Colas C, et al. Association of thromboxane A1 synthase (TBXAS1) gene polymorphism with acute urticaria induced by nonsteroidal anti-inflammatory drugs. J Allergy Clin Immunol. 2013;132:989–91.  https://doi.org/10.1016/j.jaci.2013.04.045.CrossRefPubMedGoogle Scholar
  117. 117.
    Park BL, Park SM, Park JS, Uh ST, Choi JS, Kim YH, et al. Association of PTGER gene family polymorphisms with aspirin intolerant asthma in Korean asthmatics. BMB Rep. 2010;43:445–9.CrossRefGoogle Scholar
  118. 118.
    Kim SH, Oh JM, Kim YS, Palmer LJ, Suh CH, Nahm DH, et al. Cysteinyl leukotriene receptor 1 promoter polymorphism is associated with aspirin-intolerant asthma in males. Clin Exp Allergy. 2006;36:433–9.  https://doi.org/10.1111/j.1365-2222.2006.02457.x.CrossRefPubMedGoogle Scholar
  119. 119.
    Park JS, Chang HS, Park CS, Lee JH, Lee YM, Choi JH, et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics. 2005;15:483–92.CrossRefGoogle Scholar
  120. 120.
    Kohyama K, Hashimoto M, Abe S, Kodaira K, Yukawa T, Hozawa S, et al. Thromboxane A2 receptor +795T>C and chemoattractant receptor-homologous molecule expressed on Th2 cells -466T>C gene polymorphisms in patients with aspirin-exacerbated respiratory disease. Mol Med Rep. 2012;5:477–82.  https://doi.org/10.3892/mmr.2011.680.CrossRefPubMedGoogle Scholar
  121. 121.
    Palikhe NS, Kim SH, Lee HY, Kim JH, Ye YM, Park HS. Association of thromboxane A2 receptor (TBXA2R) gene polymorphism in patients with aspirin-intolerant acute urticaria. Clin Exp Allergy. 2011;41:179–85.  https://doi.org/10.1111/j.1365-2222.2010.03642.x.CrossRefPubMedGoogle Scholar
  122. 122.
    Agundez JA, Ayuso P, Cornejo-Garcia JA, Blanca M, Torres MJ, Dona I, et al. The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs. PLoS One. 2012;7:e47571.  https://doi.org/10.1371/journal.pone.0047571.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ferreira Vasconcelos LM, Rodrigues RO, Albuquerque AA, Barroso GD, Sasahara GL, Severo Ferreira JF, et al. Polymorphism of IL10, IL4, CTLA4, and DAO genes in cross-reactive nonsteroidal anti-inflammatory drug hypersensitivity. J Clin Pharmacol. 2018;58:107–13.  https://doi.org/10.1002/jcph.986.CrossRefPubMedGoogle Scholar
  124. 124.
    Ayuso P, Plaza-Seron Mdel C, Dona I, Blanca-Lopez N, Campo P, Cornejo-Garcia JA, et al. Association study of genetic variants in PLA2G4A, PLCG1, LAT, SYK, and TNFRS11A genes in NSAIDs-induced urticaria and/or angioedema patients. Pharmacogenet Genomics. 2015;25:618–21.  https://doi.org/10.1097/FPC.0000000000000179.CrossRefPubMedGoogle Scholar
  125. 125.
    Kim LH, Chang H, Namgoong S, Kim JO, Cheong HS, Lee SG, et al. Genetic variants of the gasdermin B gene associated with the development of aspirin-exacerbated respiratory diseases. Allergy Asthma Proc. 2017;38:4–12.  https://doi.org/10.2500/aap.2017.38.4014.CrossRefPubMedGoogle Scholar
  126. 126.
    Kim BS, Park SM, Uhm TG, Kang JH, Park JS, Jang AS, et al. Effect of single nucleotide polymorphisms within the interleukin-4 promoter on aspirin intolerance in asthmatics and interleukin-4 promoter activity. Pharmacogenet Genomics. 2010;20:748–58.  https://doi.org/10.1097/FPC.0b013e3283402155.CrossRefPubMedGoogle Scholar
  127. 127.
    Benito Pescador D, Isidoro-Garcia M, Garcia-Solaesa V, Pascual de Pedro M, Sanz C, Hernandez-Hernandez L, et al. Genetic association study in nasal polyposis. J Investig Allergol Clin Immunol. 2012;22:331–40.PubMedGoogle Scholar
  128. 128.
    Dekker JW, Nizankowska E, Schmitz-Schumann M, Pile K, Bochenek G, Dyczek A, et al. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin Exp Allergy. 1997;27:574–7.CrossRefGoogle Scholar
  129. 129.
    Choi JH, Lee KW, Oh HB, Lee KJ, Suh YJ, Park CS, et al. HLA association in aspirin-intolerant asthma: DPB1*0301 as a strong marker in a Korean population. J Allergy Clin Immunol. 2004;113:562–4.CrossRefGoogle Scholar
  130. 130.
    Graser S, Stierhof YD, Nigg EA. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. J Cell Sci. 2007;120:4321–31.  https://doi.org/10.1242/jcs.020248.CrossRefPubMedGoogle Scholar
  131. 131.
    Chen Y, Low TY, Choong LY, Ray RS, Tan YL, Toy W, et al. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells. Proteomics. 2007;7:2384–97.  https://doi.org/10.1002/pmic.200600968.CrossRefPubMedGoogle Scholar
  132. 132.
    Park BL, Kim TH, Kim JH, Bae JS, Pasaje CF, Cheong HS, et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum Genet. 2013;132:313–21.  https://doi.org/10.1007/s00439-012-1247-2.CrossRefPubMedGoogle Scholar
  133. 133.
    Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The National Academies Collection: Reports funded by National Institutes of Health; 2011.Google Scholar
  134. 134.
    •• Prokop JW, May T, Strong K, Bilinovich SM, Bupp C, Rajasekaran S, et al. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol Genomics. 2018;50:563–79.  https://doi.org/10.1152/physiolgenomics.00046.2018 An excellent, nicely written review article on clinical application of genome sequencing.CrossRefPubMedGoogle Scholar
  135. 135.
    Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009;360:1696–8.  https://doi.org/10.1056/NEJMp0806284.CrossRefPubMedGoogle Scholar
  136. 136.
    Marigorta UM, Rodriguez JA, Gibson G, Navarro A. Replicability and prediction: lessons and challenges from GWAS. Trends Genet. 2018;34:504–17.  https://doi.org/10.1016/j.tig.2018.03.005.CrossRefPubMedGoogle Scholar
  137. 137.
    Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9.  https://doi.org/10.1126/science.1219240.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51.  https://doi.org/10.1126/science.1058040.CrossRefPubMedGoogle Scholar
  139. 139.
    International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.  https://doi.org/10.1038/nature03001.CrossRefGoogle Scholar
  140. 140.
    Schloss JA. How to get genomes at one ten-thousandth the cost. Nat Biotechnol. 2008;26:1113–5.  https://doi.org/10.1038/nbt1008-1113.CrossRefPubMedGoogle Scholar
  141. 141.
    •• Muzzey D, Evans EA, Lieber C. Understanding the basics of NGS: from mechanism to variant calling. Curr Genet Med Rep. 2015;3:158–65.  https://doi.org/10.1007/s40142-015-0076-8 An excellent description of the basis of NGS.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Nowrousian M. Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell. 2010;9:1300–10.  https://doi.org/10.1128/EC.00123-10.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    •• Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1).  https://doi.org/10.1002/wrna.1364 An outstanding description of RNA-seq method for gene expression analysis.
  144. 144.
    Cornejo-Garcia JA, Fernandez TD, Torres MJ, Carballo M, Hernan I, Antunez C, et al. Differential cytokine and transcription factor expression in patients with allergic reactions to drugs. Allergy. 2007;62:1429–38.  https://doi.org/10.1111/j.1398-9995.2007.01542.x.CrossRefPubMedGoogle Scholar
  145. 145.
    Stutz WE, Bolnick DI. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One. 2014;9:e100587.  https://doi.org/10.1371/journal.pone.0100587.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    •• Weimer ET, Montgomery M, Petraroia R, Crawford J, Schmitz JL. Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing. J Mol Diagn. 2016;18:668–75.  https://doi.org/10.1016/j.jmoldx.2016.03.009 An excellent evaluation of HLA typing through NGS technologies.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Natalia Pérez-Sánchez
    • 1
  • Raquel Jurado-Escobar
    • 2
  • Inmaculada Doña
    • 1
    • 3
  • Víctor Soriano-Gomis
    • 4
    • 5
  • Carmen Moreno-Aguilar
    • 6
    • 7
    • 8
  • Joan Bartra
    • 9
    • 10
  • María Isidoro-García
    • 11
    • 12
    • 13
  • María José Torres
    • 1
    • 3
  • José Antonio  Cornejo-García
    • 2
    • 3
    Email author
  1. 1.Allergy Unit, IBIMA, Regional University Hospital of MalagaUMAMalagaSpain
  2. 2.Research Laboratory, IBIMA, Regional University Hospital of MalagaUMAMálagaSpain
  3. 3.ARADyAL Network RD16/0006/0001Carlos III Health InstituteMalagaSpain
  4. 4.Hospital General Universitario de AlicanteAlicanteSpain
  5. 5.ARADyAL Network RD16/0006/0032Carlos III Health InstituteAlicanteSpain
  6. 6.Allergy ServiceReina Sofia University HospitalCordobaSpain
  7. 7.Maimonides Institute for Research in Biomedicine (IMIBIC)CordobaSpain
  8. 8.ARADyAL Network RD16/0006/0018Carlos III Health InstituteCordobaSpain
  9. 9.Allergy Section, Pneumology DepartmentHospital Clínic Universitat de BarcelonaBarcelonaSpain
  10. 10.ARADyAL Network RD16/0006/0007Carlos III Health InstituteBarcelonaSpain
  11. 11.Biosciences Institute of SalamancaUniversity of SalamancaSalamancaSpain
  12. 12.Department of MedicineUniversity of SalamancaSalamancaSpain
  13. 13.ARADyAL Network RD16/0006/0019Carlos III Health InstituteSalamancaSpain

Personalised recommendations