Advertisement

Asthma and the Biologics Revolution, Part 2: Failures and the Future Potential

  • Babak Aberumand
  • Anne K. EllisEmail author
Allergic Asthma (DES Larenas-Linnemann de Martinez, Section Editor)
  • 6 Downloads
Part of the following topical collections:
  1. Topical Collection on Allergic Asthma

Abstract

Purpose of this review

To highlight the evidence behind the various biologics that are being developed for asthma along with their specific targets in the inflammatory cascade and the potential role they serve in the management of allergic asthma.

Recent findings

The mainstay of asthma management for the majority of asthmatics is inhaled corticosteroids with or without long-acting beta-agonists and/or leukotriene modifiers and/or tiotropium. However, in the small group of individuals with severe asthma uncontrolled with conventional therapy, biologics have emerged as an effective therapeutic option.

Summary

Asthma is a chronic heterogenous disease affecting both children and adults. In its severe form, asthma is associated with significant morbidity and mortality along with increased healthcare utilization and costs. Several biologics targeting different areas of the asthmatic inflammatory cascade such as IgE and IL-5 have been approved for the management of severe allergic asthma. Recent advances have helped to further uncover the pathophysiology of asthma which have identified other potential targets for therapy in the moderate-to-severe difficult to treat asthmatic population.

Keywords

Biologics Asthma Anti-IgE Interleukin Anti-IL1 Anti-IL2 Anti-IL4 and anti-IL13 Anti-IL9 Anti-IL17 and anti-IL23 Anti-prostaglandins Anti-IL25 Anti-IL33 TSLP Anti-TNF-α 

Notes

Compliance with Ethical Standards

Conflict of Interest

Anne Ellis has participated in advisory boards for ALK Abello, Circassia Ltd, GlaxoSmithKline, Johnson & Johnson, Merck and Novartis, and has been a speaker for Aralez, AstraZeneca, Boehringer Ingelheim, Meda, Mylan, Merck, Novartis, Pediapharm, Pfizer, and Takeda. Her institution has received research grants from Circassia Ltd, Green Cross Pharmaceuticals, GlaxoSmithKline, Sanofi, Sun Pharma, Merck, Novartis, and Pfizer. Dr. Ellis is also a consultant to Bayer Inc. and reports personal fees from kaleo. Babak Aberumand declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Masoli M, Fabian D, Holt S, Beasley R. Global Initiative for Asthma P. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–78.  https://doi.org/10.1111/j.1398-9995.2004.00526.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Bateman ED, Hurd SS, Barnes PJ, Bousquet J, Drazen JM, FitzGerald JM, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–78.  https://doi.org/10.1183/09031936.00138707.CrossRefPubMedGoogle Scholar
  3. 3.
    Holt PG, Sly PD. Interaction between adaptive and innate immune pathways in the pathogenesis of atopic asthma: operation of a lung/bone marrow axis. Chest. 2011;139(5):1165–71.  https://doi.org/10.1378/chest.10-2397.CrossRefPubMedGoogle Scholar
  4. 4.
    Dolan CM, Fraher KE, Bleecker ER, Borish L, Chipps B, Hayden ML, et al. Design and baseline characteristics of the epidemiology and natural history of asthma: Outcomes and Treatment Regimens (TENOR) study: a large cohort of patients with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol. 2004;92(1):32–9.  https://doi.org/10.1016/S1081-1206(10)61707-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Burrows B, Martinez FD, Halonen M, Barbee RA, Cline MG. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med. 1989;320(5):271–7.  https://doi.org/10.1056/NEJM198902023200502.CrossRefPubMedGoogle Scholar
  6. 6.
    Sihra BS, Kon OM, Grant JA, Kay AB. Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol. 1997;99(5):699–706.CrossRefGoogle Scholar
  7. 7.
    Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest. 2008;118(11):3546–56.  https://doi.org/10.1016/S0091-6749(97)70033-2.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.  https://doi.org/10.1183/09031936.00202013.CrossRefPubMedGoogle Scholar
  9. 9.
    Godard P, Chanez P, Siraudin L, Nicoloyannis N, Duru G. Costs of asthma are correlated with severity: a 1-yr prospective study. Eur Respir J. 2002;19(1):61–7.  https://doi.org/10.1183/09031936.02.00232001.CrossRefPubMedGoogle Scholar
  10. 10.
    Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol. 2008;8(3):205–17.  https://doi.org/10.1038/nri2273.CrossRefPubMedGoogle Scholar
  11. 11.
    Haselkorn T, Borish L, Miller DP, Weiss ST, Wong DA. High prevalence of skin test positivity in severe or difficult-to-treat asthma. J Asthma. 2006;43(10):745–52.  https://doi.org/10.1080/02770900601031540.CrossRefPubMedGoogle Scholar
  12. 12.
    Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.  https://doi.org/10.1038/nm.2755.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pelaia C, Calabrese C, Terracciano R, de Blasio F, Vatrella A, Pelaia G. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther Adv Respir Dis. 2018;12:1753466618810192.  https://doi.org/10.1177/1753466618810192.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Arm JP, Bottoli I, Skerjanec A, Floch D, Groenewegen A, Maahs S, et al. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy. 2014;44(11):1371–85.  https://doi.org/10.1111/cea.12400.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gauvreau GM, Arm JP, Boulet LP, Leigh R, Cockcroft DW, Davis BE, et al. Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol. 2016;138(4):1051–9.  https://doi.org/10.1016/j.jaci.2016.02.027.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen JB, Wu PC, Hung AF, Chu CY, Tsai TF, Yu HM, et al. Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells. J Immunol. 2010;184(4):1748–56.  https://doi.org/10.4049/jimmunol.0902437.CrossRefPubMedGoogle Scholar
  17. 17.
    Chowdhury PS, Chen Y, Yang C, Cook KE, Nyborg AC, Ettinger R, et al. Targeting the junction of CvarepsilonmX and varepsilon-migis for the specific depletion of mIgE-expressing B cells. Mol Immunol. 2012;52(3-4):279–88.  https://doi.org/10.1016/j.molimm.2012.06.004.CrossRefPubMedGoogle Scholar
  18. 18.
    Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM, Putnam WS, et al. Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production. Sci Transl Med. 2014;6(243):243ra85.  https://doi.org/10.1126/scitranslmed.3008961.CrossRefPubMedGoogle Scholar
  19. 19.
    Harris JM, Maciuca R, Bradley MS, Cabanski CR, Scheerens H, Lim J, et al. A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir Res. 2016;17:29.  https://doi.org/10.1186/s12931-016-0347-2.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenwasser LJ, Busse WW, Lizambri RG, Olejnik TA, Totoritis MC. Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol. 2003;112(3):563–70.  https://doi.org/10.1016/S0091-6749(03)01861-X.CrossRefPubMedGoogle Scholar
  21. 21.
    Kuno K, Matsushima K. The IL-1 receptor signaling pathway. J Leukoc Biol. 1994;56(5):542–7.  https://doi.org/10.1002/jlb.56.5.542.CrossRefPubMedGoogle Scholar
  22. 22.
    Broide DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI. Cytokines in symptomatic asthma airways. J Allergy Clin Immunol. 1992;89(5):958–67.  https://doi.org/10.1016/0091-6749(92)90218-q.CrossRefPubMedGoogle Scholar
  23. 23.
    Park CS, Lee SM, Chung SW, Uh S, Kim HT, Kim YH. Interleukin-2 and soluble interleukin-2 receptor in bronchoalveolar lavage fluid from patients with bronchial asthma. Chest. 1994;106(2):400–6.  https://doi.org/10.1378/chest.106.2.400.CrossRefPubMedGoogle Scholar
  24. 24.
    Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw AJ, Knowles G, et al. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis. 1990;142(6 Pt 1):1407–13.  https://doi.org/10.1164/ajrccm/142.6_Pt_1.1407.CrossRefPubMedGoogle Scholar
  25. 25.
    Busse WW, Israel E, Nelson HS, Baker JW, Charous BL, Young DY, et al. Daclizumab improves asthma control in patients with moderate to severe persistent asthma: a randomized, controlled trial. Am J Respir Crit Care Med. 2008;178(10):1002–8.  https://doi.org/10.1164/rccm.200708-1200OC.CrossRefPubMedGoogle Scholar
  26. 26.
    Steinke JW. Anti-interleukin-4 therapy. Immunol Allergy Clin N Am. 2004;24(4):599–614, vi.  https://doi.org/10.1016/j.iac.2004.06.008.CrossRefGoogle Scholar
  27. 27.
    Coyle AJ, Le Gros G, Bertrand C, Tsuyuki S, Heusser CH, Kopf M, et al. Interleukin-4 is required for the induction of lung Th2 mucosal immunity. Am J Respir Cell Mol Biol. 1995;13(1):54–9.  https://doi.org/10.1165/ajrcmb.13.1.7598937.CrossRefPubMedGoogle Scholar
  28. 28.
    Swart DA, Anders-Bartholo PM, Tocker JE. Effects of IL-4Rα blockade on lung inflammation and airway hyperresponsiveness using Mu317RAXMu, a murine surrogate for AMG 317, in a treatment model of cockroach allergen-induced asthma in mice. J Allergy Clin Immunol. 2008;121(2):S267.  https://doi.org/10.1016/j.jaci.2007.12.1061.CrossRefGoogle Scholar
  29. 29.
    Hart TK, Blackburn MN, Brigham-Burke M, Dede K, Al-Mahdi N, Zia-Amirhosseini P, et al. Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol. 2002;130(1):93–100.  https://doi.org/10.1046/j.1365-2249.2002.01973.x.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Henderson WR Jr, Chi EY, Maliszewski CR. Soluble IL-4 receptor inhibits airway inflammation following allergen challenge in a mouse model of asthma. J Immunol. 2000;164(2):1086–95.  https://doi.org/10.4049/jimmunol.164.2.1086.CrossRefPubMedGoogle Scholar
  31. 31.
    Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, et al. Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med. 1999;160(6):1816–23.  https://doi.org/10.1164/ajrccm.160.6.9808146.CrossRefPubMedGoogle Scholar
  32. 32.
    Borish LC, Nelson HS, Corren J, Bensch G, Busse WW, Whitmore JB, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol. 2001;107(6):963–70.  https://doi.org/10.1067/mai.2001.115624.CrossRefPubMedGoogle Scholar
  33. 33.
    Berry MA, Parker D, Neale N, Woodman L, Morgan A, Monk P, et al. Sputum and bronchial submucosal IL-13 expression in asthma and eosinophilic bronchitis. J Allergy Clin Immunol. 2004;114(5):1106–9.  https://doi.org/10.1016/j.jaci.2004.08.032.CrossRefPubMedGoogle Scholar
  34. 34.
    Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R, et al. Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol. 2008;121(3):685–91.  https://doi.org/10.1016/j.jaci.2008.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.  https://doi.org/10.1056/NEJMoa1106469.CrossRefPubMedGoogle Scholar
  36. 36.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol. 2006;118(1):98–104.  https://doi.org/10.1016/j.jaci.2006.02.046.CrossRefPubMedGoogle Scholar
  37. 37.
    Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y, et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol. 2013;132(3):567–74 e12.  https://doi.org/10.1016/j.jaci.2013.03.051.CrossRefPubMedGoogle Scholar
  38. 38.
    Korenblat P, Kerwin E, Leshchenko I, Yen K, Holweg CTJ, Anzures-Cabrera J, et al. Efficacy and safety of lebrikizumab in adult patients with mild-to-moderate asthma not receiving inhaled corticosteroids. Respir Med. 2018;134:143–9.  https://doi.org/10.1016/j.rmed.2017.12.006.CrossRefPubMedGoogle Scholar
  39. 39.
    Scheerens H, Arron JR, Zheng Y, Putnam WS, Erickson RW, Choy DF, et al. The effects of lebrikizumab in patients with mild asthma following whole lung allergen challenge. Clin Exp Allergy. 2014;44(1):38–46.  https://doi.org/10.1111/cea.12220.CrossRefPubMedGoogle Scholar
  40. 40.
    Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax. 2015;70(8):748–56.  https://doi.org/10.1136/thoraxjnl-2014-206719.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med. 2016;4(10):781–96.  https://doi.org/10.1016/S2213-2600(16)30265-X.CrossRefPubMedGoogle Scholar
  42. 42.
    Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE, et al. Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med. 2011;183(8):1007–14.  https://doi.org/10.1164/rccm.201008-1210OC.CrossRefPubMedGoogle Scholar
  43. 43.
    Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007;370(9596):1422–31.  https://doi.org/10.1016/S0140-6736(07)61600-6.CrossRefPubMedGoogle Scholar
  44. 44.
    Wenzel S, Ind P, Otulana B, Bleecker E, Kuna P, Yen Y. Inhaled pitrakinra, an IL-4/IL-13 antagonist, reduced exacerbations in patients with eosinophilic asthma. Barcelona: Proceedings of the European Respiratory Society Annual Congress; 2010.Google Scholar
  45. 45.
    Slager RE, Otulana BA, Hawkins GA, Yen YP, Peters SP, Wenzel SE, et al. IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor alpha antagonist. J Allergy Clin Immunol. 2012;130(2):516–22 e4.  https://doi.org/10.1016/j.jaci.2012.03.030.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J, et al. A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med. 2010;181(8):788–96.  https://doi.org/10.1164/rccm.200909-1448OC.CrossRefPubMedGoogle Scholar
  47. 47.
    Singh D, Kane B, Molfino NA, Faggioni R, Roskos L, Woodcock A. A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma. BMC Pulm Med. 2010;10:3.  https://doi.org/10.1186/1471-2466-10-3.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–8.  https://doi.org/10.1183/09031936.00223411.CrossRefPubMedGoogle Scholar
  49. 49.
    Humbert M, Durham SR, Kimmitt P, Powell N, Assoufi B, Pfister R, et al. Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol. 1997;99(5):657–65.  https://doi.org/10.1016/S0091-6749(97)70028-9.CrossRefPubMedGoogle Scholar
  50. 50.
    Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3(9):692–701.  https://doi.org/10.1016/S2213-2600(15)00197-6.CrossRefPubMedGoogle Scholar
  51. 51.
    Russell RJ, Chachi L, FitzGerald JM, Backer V, Olivenstein R, Titlestad IL, et al. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Respir Med. 2018;6(7):499–510.  https://doi.org/10.1016/S2213-2600(18)30201-7.CrossRefPubMedGoogle Scholar
  52. 52.
    Panettieri RA Jr, Sjobring U, Peterffy A, Wessman P, Bowen K, Piper E, et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir Med. 2018;6(7):511–25.  https://doi.org/10.1016/S2213-2600(18)30184-X.CrossRefPubMedGoogle Scholar
  53. 53.
    Busse WW, Brusselle GG, Korn S, Kuna P, Magnan A, Cohen D, et al. Tralokinumab did not demonstrate oral corticosteroid-sparing effects in severe asthma. Eur Respir J. 2019;53(2):1800948.  https://doi.org/10.1183/13993003.00948-2018.CrossRefPubMedGoogle Scholar
  54. 54.
    Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol. 2000;105(1 Pt 1):108–15.  https://doi.org/10.1016/S0091-6749(00)90185-4.CrossRefPubMedGoogle Scholar
  55. 55.
    White B, Leon F, White W, Robbie G. Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther. 2009;31(4):728–40.  https://doi.org/10.1016/j.clinthera.2009.04.019.CrossRefPubMedGoogle Scholar
  56. 56.
    Parker JM, Oh CK, LaForce C, Miller SD, Pearlman DS, Le C, et al. Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma. BMC Pulm Med. 2011;11:14.  https://doi.org/10.1186/1471-2466-11-14.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Oh CK, Leigh R, McLaurin KK, Kim K, Hultquist M, Molfino NA. A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir Res. 2013;14:93.  https://doi.org/10.1186/1465-9921-14-93.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–302.  https://doi.org/10.1164/rccm.201212-2318OC.CrossRefPubMedGoogle Scholar
  59. 59.
    Lebwohl MG, Papp KA, Marangell LB, Koo J, Blauvelt A, Gooderham M, et al. Psychiatric adverse events during treatment with brodalumab: analysis of psoriasis clinical trials. J Am Acad Dermatol. 2018;78(1):81–9 e5.  https://doi.org/10.1016/j.jaad.2017.08.024.CrossRefPubMedGoogle Scholar
  60. 60.
    Wakashin H, Hirose K, Maezawa Y, Kagami S, Suto A, Watanabe N, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med. 2008;178(10):1023–32.  https://doi.org/10.1164/rccm.200801-086OC.CrossRefPubMedGoogle Scholar
  61. 61.
    Tang W, Smith SG, Beaudin S, Dua B, Howie K, Gauvreau G, et al. IL-25 and IL-25 receptor expression on eosinophils from subjects with allergic asthma. Int Arch Allergy Immunol. 2014;163(1):5–10.  https://doi.org/10.1159/000355331.CrossRefPubMedGoogle Scholar
  62. 62.
    Corrigan CJ, Wang W, Meng Q, Fang C, Eid G, Caballero MR, et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol. 2011;128(1):116–24.  https://doi.org/10.1016/j.jaci.2011.03.043.CrossRefPubMedGoogle Scholar
  63. 63.
    Morita H, Arae K, Unno H, Toyama S, Motomura K, Matsuda A, et al. IL-25 and IL-33 contribute to development of eosinophilic airway inflammation in epicutaneously antigen-sensitized mice. PLoS One. 2015;10(7):e0134226.  https://doi.org/10.1371/journal.pone.0134226.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183–90.  https://doi.org/10.4049/jimmunol.174.12.8183.CrossRefPubMedGoogle Scholar
  65. 65.
    Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–8.  https://doi.org/10.4049/jimmunol.181.4.2790.CrossRefPubMedGoogle Scholar
  66. 66.
    Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10.  https://doi.org/10.1056/NEJMoa1402895.CrossRefPubMedGoogle Scholar
  67. 67.
    • Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46.  https://doi.org/10.1056/NEJMoa1704064This study demonstrated that tezepelumab was able to significantly lower rates of annual asthma exacerbations irrespective of Th2 status in moderate-to-severe asthmatics on maximal standard therapy. This has led to tezepelumab being granted breakthrough therapy designation to expedite its development.CrossRefPubMedGoogle Scholar
  68. 68.
    Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab demonstrates clinically meaningful improvements in asthma control (ACQ-6) in patients with uncontrolled asthma: results from a phase 2b clinical trial. J Allergy Clin Immunol. 2018;141:80.  https://doi.org/10.1016/j.jaci.2017.12.259.CrossRefGoogle Scholar
  69. 69.
    Murray JJ, Tonnel AB, Brash AR, Roberts LJ 2nd, Gosset P, Workman R, et al. Release of prostaglandin D2 into human airways during acute antigen challenge. N Engl J Med. 1986;315(13):800–4.  https://doi.org/10.1056/NEJM198609253151304.CrossRefPubMedGoogle Scholar
  70. 70.
    Vinall SL, Townsend ER, Pettipher R. A paracrine role for chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) in mediating chemotactic activation of CRTH2+ CD4+ T helper type 2 lymphocytes. Immunology. 2007;121(4):577–84.  https://doi.org/10.1111/j.1365-2567.2007.02606.x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255–61.  https://doi.org/10.1084/jem.193.2.255.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Domingo C, Palomares O, Sandham DA, Erpenbeck VJ, Altman P. The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir Res. 2018;19(1):189.  https://doi.org/10.1186/s12931-018-0893-x.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Singh D, Cadden P, Hunter M, Pearce Collins L, Perkins M, Pettipher R, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46–52.  https://doi.org/10.1183/09031936.00092111.CrossRefPubMedGoogle Scholar
  74. 74.
    Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M, Lewis T, et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy. 2012;42(1):38–48.  https://doi.org/10.1111/j.1365-2222.2011.03813.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Pettipher R, Hunter MG, Perkins CM, Collins LP, Lewis T, Baillet M, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223–32.  https://doi.org/10.1111/all.12451.CrossRefPubMedGoogle Scholar
  76. 76.
    Erpenbeck VJ, Popov TA, Miller D, Weinstein SF, Spector S, Magnusson B, et al. The oral CRTh2 antagonist QAW039 (fevipiprant): a phase II study in uncontrolled allergic asthma. Pulm Pharmacol Ther. 2016;39:54–63.  https://doi.org/10.1016/j.pupt.2016.06.005.CrossRefPubMedGoogle Scholar
  77. 77.
    Gonem S, Berair R, Singapuri A, Hartley R, Laurencin MFM, Bacher G, et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med. 2016;4(9):699–707.  https://doi.org/10.1016/S2213-2600(16)30179-5.CrossRefPubMedGoogle Scholar
  78. 78.
    • Bateman ED, Guerreros AG, Brockhaus F, Holzhauer B, Pethe A, Kay RA, et al. Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur Respir J. 2017;50(2):1700670.  https://doi.org/10.1183/13993003.00670-2017 This study showed that fevipiprant was effective in improving lung function (FEV1) in patients with allergic asthma uncontrolled by low-dose ICS. This has led fevipiprant to be evaluated in further clinical trials for asthma.CrossRefPubMedGoogle Scholar
  79. 79.
    Ortega H, Fitzgerald M, Bhakta N, Raghupathi K, Singh D. Reduction of Exhaled Nitric Oxide by the DP2 antagonist GB001 in Patients with Mild Atopic Asthma. J Allergy Clin Immunol. 2019;143(2):AB104.  https://doi.org/10.1016/j.jaci.2018.12.314.CrossRefGoogle Scholar
  80. 80.
    Diamant Z, Sidharta PN, Singh D, O'Connor BJ, Zuiker R, Leaker BR, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics. Clin Exp Allergy. 2014;44(8):1044–52.  https://doi.org/10.1111/cea.12357.CrossRefPubMedGoogle Scholar
  81. 81.
    Norman P. Update on the status of DP2 receptor antagonists; from proof of concept through clinical failures to promising new drugs. Expert Opin Investig Drugs. 2014;23(1):55–66.  https://doi.org/10.1517/13543784.2013.839658.CrossRefPubMedGoogle Scholar
  82. 82.
    Snell NJ. Discontinued drug projects in the respiratory therapeutic area during 2012. Expert Opin Investig Drugs. 2014;23(3):411–5.  https://doi.org/10.1517/13543784.2014.873785.CrossRefPubMedGoogle Scholar
  83. 83.
    Bradding P, Roberts JA, Britten KM, Montefort S, Djukanovic R, Mueller R, et al. Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol. 1994;10(5):471–80.  https://doi.org/10.1165/ajrcmb.10.5.8179909.CrossRefPubMedGoogle Scholar
  84. 84.
    Brightling C, Berry M, Amrani Y. Targeting TNF-alpha: a novel therapeutic approach for asthma. J Allergy Clin Immunol. 2008;121(1):5–10; quiz 1-2.  https://doi.org/10.1016/j.jaci.2007.10.028.CrossRefGoogle Scholar
  85. 85.
    Van Bogaert T, De Bosscher K, Libert C. Crosstalk between TNF and glucocorticoid receptor signaling pathways. Cytokine Growth Factor Rev. 2010;21(4):275–86.  https://doi.org/10.1016/j.cytogfr.2010.04.003.CrossRefPubMedGoogle Scholar
  86. 86.
    Lukacs NW, Strieter RM, Chensue SW, Widmer M, Kunkel SL. TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol. 1995;154(10):5411–7.PubMedGoogle Scholar
  87. 87.
    Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60(12):1012–8.  https://doi.org/10.1136/thx.2005.045260.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697–708.  https://doi.org/10.1056/NEJMoa050580.CrossRefPubMedGoogle Scholar
  89. 89.
    Morjaria JB, Chauhan AJ, Babu KS, Polosa R, Davies DE, Holgate ST. The role of a soluble TNFalpha receptor fusion protein (etanercept) in corticosteroid refractory asthma: a double blind, randomised, placebo controlled trial. Thorax. 2008;63(7):584–91.  https://doi.org/10.1136/thx.2007.086314.CrossRefPubMedGoogle Scholar
  90. 90.
    Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J. 2011;37(6):1352–9.  https://doi.org/10.1183/09031936.00063510.CrossRefPubMedGoogle Scholar
  91. 91.
    Erin EM, Leaker BR, Nicholson GC, Tan AJ, Green LM, Neighbour H, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-alpha in asthma. Am J Respir Crit Care Med. 2006;174(7):753–62.  https://doi.org/10.1164/rccm.200601-072OC.CrossRefPubMedGoogle Scholar
  92. 92.
    Trevor TH, Bush A, Min Kon O, Barnes PJ. Retraction of four articles and abstracts. Am J Respir Crit Care Med. 2011;183(3):418.  https://doi.org/10.1164/ajrccm.183.3.418.CrossRefGoogle Scholar
  93. 93.
    Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(7):549–58.  https://doi.org/10.1164/rccm.200809-1512OC.CrossRefPubMedGoogle Scholar
  94. 94.
    Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51.  https://doi.org/10.1038/nbt.2786.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MedicineQueen’s UniversityKingstonCanada
  2. 2.Allergy Research UnitKingston General HospitalKingstonCanada
  3. 3.Division of Allergy & Immunology, Department of MedicineQueen’s UniversityKingstonCanada
  4. 4.Department of Biomedical and Molecular ScienceQueen’s UniversityKingstonCanada

Personalised recommendations