Advertisement

Diabetes mellitus and risk of low-energy fracture: a meta-analysis

  • Jing Bai
  • Qian Gao
  • Chen Wang
  • Jia DaiEmail author
Review
  • 23 Downloads

Abstract

Background

Low-energy fracture risk is significantly increased in diabetes mellitus, the purpose of this article is to systematically evaluate the association between diabetes mellitus and risk for low-energy fracture.

Methods

We conducted a systematic literature search of Medline, Embase, Science Citation Index, Wiley Online Library database through January 2019. Pooled relative risks (RR) with corresponding 95% confidence intervals (95% CI) were calculated with random-effects model to assess the strength of association.

Results

Thirty-seven studies met the inclusion criteria, which included 3,123,382 participants. The pooled RR of any fracture in people with diabetes mellitus was 1.5 (95% CI 1.3–1.8; P < 0.05). The significant association not found in subgroup analysis of prospective design, follow-up period ≥ 10 year (all P > 0.05). The pooled RR of hip fracture in people with diabetes mellitus was 2.0 (95% CI 1.8–2.3; P < 0.05). In addition, subgroup analysis shown higher risk of hip fracture in type 1 diabetes (RR: 5.3). The pooled RR of vertebral fracture with diabetes mellitus was 1.4 (95% CI 0.9–2.2; P = 0.196). Subgroup analysis by type of diabetes showed that the RR of vertebral fracture for patients with unknown-type diabetes was 2.4 (95% CI 1.4–4.0; P < 0.05). Diabetes mellitus was associated with fractures at other sites, and effect estimates was statically significant.

Conclusions

Diabetes mellitus is an independent risk factor for low-energy fracture, and this relationship is more pronounced in hip fracture.

Keywords

Diabetes mellitus Low-energy fractures Risk factors Meta-analysis 

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study inform consent is not required.

References

  1. 1.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733.  https://doi.org/10.1007/s00198-006-0172-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Jackuliak P, Payer J (2014) Osteoporosis, fractures, and diabetes. Int J Endocrinol 2014:820615.  https://doi.org/10.1155/2014/820615 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Janghorbani M, Van Dam RM, Willett WC et al (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505.  https://doi.org/10.1093/aje/kwm106 CrossRefPubMedGoogle Scholar
  4. 4.
    Weber DR, Haynes K, Leonard MB et al (2015) Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38:1913–1920.  https://doi.org/10.2337/dc15-0783 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Starup-Linde J, Hygum K, Harsløf T et al (2018) Indications of increased vertebral fracture risk in patients with type 2 diabetes. J Bone Mineral Res 33:182.  https://doi.org/10.1002/jbmr.3323 CrossRefGoogle Scholar
  6. 6.
    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444.  https://doi.org/10.1007/s00198-006-0253-4 CrossRefPubMedGoogle Scholar
  7. 7.
    Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822.  https://doi.org/10.1001/jama.286.22.2815 CrossRefPubMedGoogle Scholar
  8. 8.
    Nicodemus KK, Folsom AR, Iowa Women’s Health S (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197.  https://doi.org/10.2337/diacare.24.7.1192 CrossRefPubMedGoogle Scholar
  9. 9.
    Starup-Linde J, Lykkeboe S, Gregersen S et al (2016) Bone structure and predictors of fracture in type 1 and type 2 diabetes. J Clin Endocrinol Metab 101:928–36.  https://doi.org/10.1210/jc.2015-3882 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu K, Hunter M, James A et al (2017) Discordance between fat mass index and body mass index is associated with reduced bone mineral density in women but not in men: the Busselton Healthy Ageing Study. Osteoporos Int 28:259–268.  https://doi.org/10.1007/s00198-016-3710-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Mastrandrea LD, Wactawski-Wende J, Donahue RP et al (2008) Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care 31:1729–1735.  https://doi.org/10.2337/dc07-2426 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Melton LJ, Leibson CL, Achenbach SJ et al (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Mineral Res 23:1334–1342.  https://doi.org/10.1359/jbmr.080323 CrossRefGoogle Scholar
  13. 13.
    Starup-Linde J, Gregersen S, Vestergaard P (2016) Associations with fracture in patients with diabetes: a nested case-control study. BMJ Open 6:e009686.  https://doi.org/10.1136/bmjopen-2015-009686 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dytfeld J, Michalak M (2017) Type 2 diabetes and risk of low-energy fractures in postmenopausal women: meta-analysis of observational studies. Aging Clin Exp Res 29:301–309.  https://doi.org/10.1007/s40520-016-0562-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Vestergaard P, Rejnmark L, Mosekilde L (2009) Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 84:45–55.  https://doi.org/10.1007/s00223-008-9195-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Schwartz AV, Sellmeyer DE, Ensrud KE et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38.  https://doi.org/10.1210/jcem.86.1.7139 CrossRefPubMedGoogle Scholar
  17. 17.
    Janghorbani M, Feskanich D, Willett WC et al (2006) Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 29:1573–1578.  https://doi.org/10.2337/dc06-0440 CrossRefPubMedGoogle Scholar
  18. 18.
    Korpelainen R, Korpelainen J, Heikkinen J et al (2003) Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1222 women. Osteoporos Int 14:34–43.  https://doi.org/10.1007/s00198-002-1319-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmed LA, Joakimsen RM, Berntsen GK et al (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromsø study. Osteoporos Int 17:495–500.  https://doi.org/10.1007/s00198-005-0013-x CrossRefPubMedGoogle Scholar
  20. 20.
    Shah C, Shah R, Kinra G et al (2015) Risk of fracture in type 2 diabetes mellitus patients: meta-analysis of observational studies. Value Health 18:A601.  https://doi.org/10.1016/j.jval.2015.09.2062 CrossRefGoogle Scholar
  21. 21.
    Jia P, Bao L, Chen H et al (2017) Risk of low-energy fracture in type 2 diabetes patients: a meta-analysis of observational studies. Osteoporos Int 28:3113–3121.  https://doi.org/10.1007/s00198-017-4183-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Fan Y, Wei F, Lang Y et al (2016) Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int 27:219–228.  https://doi.org/10.1007/s00198-015-3279-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J, You W, Jing Z et al (2016) Increased risk of vertebral fracture in patients with diabetes: a meta-analysis of cohort studies. Int Orthop 40:1299–1307.  https://doi.org/10.1007/s00264-016-3146-y CrossRefPubMedGoogle Scholar
  24. 24.
    The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
  25. 25.
    Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605.  https://doi.org/10.1007/s10654-010-9491-z CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pignon J-P, Poynard T (1991) Meta-analysis of clinical trials. Gastroenterol Clin Biol 15:229–238.  https://doi.org/10.1002/9781118670767.ch13 CrossRefPubMedGoogle Scholar
  27. 27.
    Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558.  https://doi.org/10.1002/sim.1186 CrossRefPubMedGoogle Scholar
  28. 28.
    Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315:629–634.  https://doi.org/10.1136/bmj.315.7109.629 CrossRefGoogle Scholar
  29. 29.
    Willi C, Bodenmann P, Ghali WA et al (2007) Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298:2654–2664.  https://doi.org/10.1001/jama.298.22.2654 CrossRefPubMedGoogle Scholar
  30. 30.
    Meyer HE, Tverdal A, Falch JA (1993) Risk factors for hip fracture in middle-aged Norwegian women and men. Am J Epidemiol 137:1203–1211.  https://doi.org/10.1093/oxfordjournals.aje.a116622 CrossRefPubMedGoogle Scholar
  31. 31.
    Forsén L, Meyer HE, Midthjell K et al (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia.  https://doi.org/10.1007/s001250051248 CrossRefPubMedGoogle Scholar
  32. 32.
    Ivers RQ, Cumming RG, Mitchell P et al (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203.  https://doi.org/10.2337/diacare.24.7.1198 CrossRefPubMedGoogle Scholar
  33. 33.
    Ottenbacher KJ, Ostir GV, Peek MK et al (2002) Diabetes mellitus as a risk factor for hip fracture in Mexican American older adults. J Gerontol Ser A Biol sci Med Sci 57:M648–M653.  https://doi.org/10.1093/gerona/57.10.m648 CrossRefGoogle Scholar
  34. 34.
    Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617.  https://doi.org/10.1001/archinte.165.14.1612 CrossRefPubMedGoogle Scholar
  35. 35.
    Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299.  https://doi.org/10.1007/s00125-005-1786-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Miao J, Brismar K, Nyrén O et al (2005) Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28:2850–2855.  https://doi.org/10.2337/diacare.28.12.2850 CrossRefPubMedGoogle Scholar
  37. 37.
    Gerdhem P, Isaksson A, Akesson K et al (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512.  https://doi.org/10.1007/s00198-005-1877-5 CrossRefPubMedGoogle Scholar
  38. 38.
    de Liefde II, van der Klift M, de Laet CEDH et al (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16:1713–1720.  https://doi.org/10.1007/s00198-005-1909-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Holmberg AH, Johnell O, Nilsson PM et al (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077.  https://doi.org/10.1007/s00198-006-0137-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Dobnig H, Piswanger-Sölkner JC, Roth M et al (2006) Type 2 diabetes mellitus in nursing home patients: effects on bone turnover, bone mass, and fracture risk. J Clin Endocrinol Metab 91:3355–3363.  https://doi.org/10.1210/jc.2006-0460 CrossRefPubMedGoogle Scholar
  41. 41.
    Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410.  https://doi.org/10.1210/jc.2006-0614 CrossRefPubMedGoogle Scholar
  42. 42.
    Lipscombe LL, Jamal SA, Booth GL et al (2007) The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care 30:835–841.  https://doi.org/10.2337/dc06-1851 CrossRefPubMedGoogle Scholar
  43. 43.
    Leslie WD, Lix LM, Prior HJ et al (2007) Biphasic fracture risk in diabetes: a population-based study. Bone 40:1595–1601.  https://doi.org/10.1016/j.bone.2007.02.021 CrossRefPubMedGoogle Scholar
  44. 44.
    Chen H-F, Ho C-A, Li C-Y (2008) Increased risks of hip fracture in diabetic patients of Taiwan: a population-based study. Diabetes Care 31:75–80.  https://doi.org/10.2337/dc07-1072 CrossRefPubMedGoogle Scholar
  45. 45.
    Sosa M, Saavedra P, Jódar E et al (2009) Bone mineral density and risk of fractures in aging, obese post-menopausal women with type 2 diabetes. The GIUMO Study. Aging Clin Exp Res 21:27–32.  https://doi.org/10.1007/bf03324895 CrossRefPubMedGoogle Scholar
  46. 46.
    Yamamoto M, Yamaguchi T, Yamauchi M et al (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Mineral Res 24:702–709.  https://doi.org/10.1359/jbmr.081207 CrossRefGoogle Scholar
  47. 47.
    Koh W-P, Wang R, Ang L-W et al (2010) Diabetes and risk of hip fracture in the Singapore Chinese Health Study. Diabetes Care 33:1766–1770.  https://doi.org/10.2337/dc10-0067 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fraser L-A, Pritchard J, Ioannidis G et al (2011) Clinical risk factors for fracture in diabetes: a matched cohort analysis. J Clin Densitom 14:416–421.  https://doi.org/10.1016/j.jocd.2011.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Strotmeyer ES, Kamineni A, Cauley JA et al (2011) Potential explanatory factors for higher incident hip fracture risk in older diabetic adults. Curr Gerontol Geriatr Res. 2011:979270.  https://doi.org/10.1155/2011/979270 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jung JK, Kim HJ, Lee HK et al (2012) Fracture incidence and risk of osteoporosis in female type 2 diabetic patients in Korea. Diabetes Metab J 36:144–150.  https://doi.org/10.4093/dmj.2012.36.2.144 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Mineral Res 27:301–308.  https://doi.org/10.1002/jbmr.556 CrossRefGoogle Scholar
  52. 52.
    Kilpadi KL, Eldabaje R, Schmitz JE et al (2014) Type 2 diabetes is associated with vertebral fractures in a sample of clinic- and hospital-based Latinos. J Immigr Minor Health 16:440–449.  https://doi.org/10.1007/s10903-013-9833-5 CrossRefPubMedGoogle Scholar
  53. 53.
    Leslie WD, Aubry-Rozier B, Lamy O et al (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98:602–609.  https://doi.org/10.1210/jc.2012-3118 CrossRefPubMedGoogle Scholar
  54. 54.
    Oei L, Zillikens MC, Dehghan A et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 36:1619–1628.  https://doi.org/10.2337/dc12-1188 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hothersall EJ, Livingstone SJ, Looker HC et al (2014) Contemporary risk of hip fracture in type 1 and type 2 diabetes: a national registry study from Scotland. J Bone Mineral Res 29:1054–1060.  https://doi.org/10.1002/jbmr.2118 CrossRefGoogle Scholar
  56. 56.
    Liao C-C, Lin C-S, Shih C-C et al (2017) Erratum. Increased risk of fracture and postfracture adverse events in patients with diabetes: two nationwide population-based retrospective cohort studies. Diabetes Care 2014;37:2246–2252. Diabetes Care 40:1134.  https://doi.org/10.2337/dc17-er08c CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Martinez-Laguna D, Tebe C, Javaid MK et al (2015) Incident type 2 diabetes and hip fracture risk: a population-based matched cohort study. Osteoporos Int 26:827–833.  https://doi.org/10.1007/s00198-014-2986-9 CrossRefPubMedGoogle Scholar
  58. 58.
    Majumdar SR, Leslie WD, Lix LM et al (2016) Longer duration of diabetes strongly impacts fracture risk assessment: the Manitoba BMD cohort. J Clin Endocrinol Metab 101:4489–4496.  https://doi.org/10.1210/jc.2016-2569 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Looker AC, Eberhardt MS, Saydah SH (2016) Diabetes and fracture risk in older U.S. adults. Bone 82:9–15.  https://doi.org/10.1016/j.bone.2014.12.008 CrossRefPubMedGoogle Scholar
  60. 60.
    Hamilton EJ, Davis WA, Bruce DG et al (2017) Risk and associates of incident hip fracture in type 1 diabetes: the Fremantle Diabetes Study. Diabetes Res Clin Pract 134:153–160.  https://doi.org/10.1016/j.diabres.2017.10.011 CrossRefPubMedGoogle Scholar
  61. 61.
    Holm JP, Jensen T, Hyldstrup L et al (2018) Fracture risk in women with type II diabetes. Results from a historical cohort with fracture follow-up. Endocrine 60:151–158.  https://doi.org/10.1007/s12020-018-1564-x CrossRefPubMedGoogle Scholar
  62. 62.
    Furtado S, Rodrigues A, Dias S et al (2019) Self-reported low-energy fractures and associated risk factors in people with diabetes: a national population-based study. Diabetes Res Clin Pract 147:93–101.  https://doi.org/10.1016/j.diabres.2018.11.015 CrossRefPubMedGoogle Scholar
  63. 63.
    Räkel A, Sheehy O, Rahme E et al (2008) Osteoporosis among patients with type 1 and type 2 diabetes. Diabetes Metab 34:193–205.  https://doi.org/10.1016/j.diabet.2007.10.008 CrossRefPubMedGoogle Scholar
  64. 64.
    Sherif E, Aziz M, Elbarbary N et al (2011) Insulin-like growth factor-1 in correlation with bone mineral density among Egyptian adolescents with type 1 diabetes mellitus. Int J Diabetes Dev Ctries 31:104–112.  https://doi.org/10.1007/s13410-011-0023-5 CrossRefGoogle Scholar
  65. 65.
    Gilmour J, Colquhoun A, Wu W et al (2018) Type 1 diabetes and bone microarchitecture assessment with trabecular bone score (TBS): a descriptive study. J Clin Densitom.  https://doi.org/10.1016/j.jocd.2017.10.022 CrossRefGoogle Scholar
  66. 66.
    Starup-Linde J, Vestergaard P (2016) Biochemical bone turnover markers in diabetes mellitus—a systematic review. Bone 82:69–78.  https://doi.org/10.1016/j.bone.2015.02.019 CrossRefPubMedGoogle Scholar
  67. 67.
    World Health Organization (2019) Classification of diabetes mellitus. World Health Organization. https://apps.who.int/iris/handle/10665/325182
  68. 68.
    Thrailkill KM, Lumpkin CK, Bunn RC et al (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735–E745.  https://doi.org/10.1152/ajpendo.00159.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Starup-Linde J (2013) Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol 4:21.  https://doi.org/10.3389/fendo.2013.00021 CrossRefGoogle Scholar
  70. 70.
    Poiana C, Capatina C (2017) Fracture risk assessment in patients with diabetes mellitus. J Clin Densitom 20:432–443.  https://doi.org/10.1016/j.jocd.2017.06.011 CrossRefPubMedGoogle Scholar
  71. 71.
    Ganeko K, Masaki C, Shibata Y et al (2015) Bone aging by advanced glycation end products: a multiscale mechanical analysis. J Dent Res 94:1684–1690.  https://doi.org/10.1177/0022034515602214 CrossRefPubMedGoogle Scholar
  72. 72.
    Saito M, Marumo K (2010) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214.  https://doi.org/10.1007/s00198-009-1066-z CrossRefPubMedGoogle Scholar
  73. 73.
    Makita Z, Radoff S, Rayfield EJ et al (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325:836–842.  https://doi.org/10.1056/nejm199109193251202 CrossRefPubMedGoogle Scholar
  74. 74.
    Yamamoto M, Yamaguchi T, Yamauchi M et al (2008) Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab.  https://doi.org/10.1210/jc.2007-1270 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gaudio A, Privitera F, Battaglia K et al (2012) Sclerostin levels associated with inhibition of the Wnt/b-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab 97:3744–3750.  https://doi.org/10.1210/jc.2012-1901 CrossRefPubMedGoogle Scholar
  76. 76.
    Moayeri A, Mohamadpour M, Mousavi SF et al (2017) Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag 13:455–468.  https://doi.org/10.2147/tcrm.s131945 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shah VN, Shah CS, Snell-Bergeon JK (2015) Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med 32:1134–1142.  https://doi.org/10.1111/dme.12734 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Valderrábano RJ, Linares MI (2018) Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol 4:9.  https://doi.org/10.1186/s40842-018-0060-9 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Dheon P, Shah VN (2014) Type 1 diabetes and osteoporosis: a review of literature. Indian J Endocrinol Metab 18:159–165.  https://doi.org/10.4103/2230-8210.129105 CrossRefGoogle Scholar
  80. 80.
    Campos Pastor MM, López-Ibarra PJ, Escobar-Jiménez F et al (2000) Intensive insulin therapy and bone mineral density in type 1 diabetes mellitus: a prospective study. Osteoporos Int 11:455–459.  https://doi.org/10.1007/s001980070114 CrossRefPubMedGoogle Scholar
  81. 81.
    Zhukouskaya VV, Eller-Vainicher C, Vadzianava VV et al (2013) Prevalence of morphometric vertebral fractures in patients with type 1 diabetes. Diabetes Care 36:1635–1640.  https://doi.org/10.2337/dc12-1355 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Herrera-Rangel AB, Aranda-Moreno C, Mantilla-Ochoa T et al (2015) Influence of the body mass index on the occurrence of falls in patients with type 2 diabetes mellitus. Obes Res Clin Pract 9:522–526.  https://doi.org/10.1016/j.orcp.2015.02.006 CrossRefPubMedGoogle Scholar
  83. 83.
    Armamento-Villareal R, Sadler C, Napoli N et al (2012) Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res 27:1215–1221CrossRefGoogle Scholar
  84. 84.
    Napoli N, Shah K, Waters DL et al (2014) Effect of weight loss, exercise, or both on cognition and quality of life in obese older adults. Am J Clin Nutr 100:189–198CrossRefGoogle Scholar
  85. 85.
    Hurskainen AR, Virtanen JK, Tuomainen TP et al (2012) Association of serum 25-hydroxyvitamin D with type 2 diabetes and markers of insulin resistance in a general older population in Finland. Diabetes Metab Res Rev 28:418–423.  https://doi.org/10.1002/dmrr.2286 CrossRefPubMedGoogle Scholar
  86. 86.
    Zhu ZN, Jiang YF, Ding T (2014) Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–123.  https://doi.org/10.1016/j.bone.2014.08.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EndocrinologyCangzhou People’s HospitalCangzhouChina
  2. 2.Department of OrthopedicsCangzhou People’s HospitalCangzhouChina

Personalised recommendations