Aging Clinical and Experimental Research

, Volume 29, Issue 1, pp 43–48 | Cite as

Nutrition, frailty, and sarcopenia

  • Alfonso J. Cruz-Jentoft
  • Eva Kiesswetter
  • Michael Drey
  • Cornel C. Sieber


Frailty and sarcopenia are important concepts in the quest to prevent physical dependence, as geriatrics are shifting towards identifications of early stages of disability. Definitions of both sarcopenia and frailty are still developing, and both concepts clearly overlap in their physical aspects. Malnutrition (both undernutrition and obesity) plays a key role in the pathogenesis of frailty and sarcopenia. The quality of the diet along the lifespan has a close relation with the incidence of both entities, and nutritional interventions may be able to reduce the incidence or revert either of them. This brief review explores the role of energy and protein intake and other key nutrients on muscle function. Nutrition may be a key element of multimodal interventions for frailty and sarcopenia. The results of the “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) trial will offer key insights on the effect of such interventions in frail, sarcopenic older individuals.


Frailty Sarcopenia Geriatric nutrition Muscle Mobility 



The present work was funded by a grant from the Innovative Medicines Initiative—Joint Undertaking (IMI-JU 115621).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.


  1. 1.
    Petit-Dutaillis D, Chavany J, Guiot G (1953) Operative frailty of patients with chromophobe adenoma of abnormal symptomatology; prognostic value of homonymous lateral hemianopsia. Presse Med 61:341–343PubMedGoogle Scholar
  2. 2.
    Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K (2013) Frailty in elderly people. Lancet 381:752–762. doi: 10.1016/S0140-6736(12)62167-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Fried LP, Tangen CM, Walston J et al. (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156. doi: 10.1093/gerona/56.3.M146 CrossRefPubMedGoogle Scholar
  4. 4.
    Rockwood K, Song X, MacKnight C et al (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489–495. doi: 10.1503/cmaj.050051 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rosenberg IH (2011) Sarcopenia: origins and clinical relevance. Clin Geriatr Med 27:337–339. doi: 10.1016/j.cger.2011.03.003 CrossRefPubMedGoogle Scholar
  6. 6.
    Goodpaster BH, Park SW, Harris TB et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 61:1059–1064CrossRefPubMedGoogle Scholar
  7. 7.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256. doi: 10.1016/j.jamda.2011.01.003 CrossRefPubMedGoogle Scholar
  8. 8.
    Morley JE, Abbatecola AM, Argiles JM et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409. doi: 10.1016/j.jamda.2011.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 39:412–423. doi: 10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cruz-Jentoft AJ, Landi F (2014) Sarcopenia. Clin Med (Lond) 14:183–186. doi: 10.7861/clinmedicine.14-2-183 CrossRefGoogle Scholar
  11. 11.
    Morley JE, Vellas B, Abellan van Kan G et al (2013) Frailty consensus: a call to action. J Am Med Dir Assoc 14:392–397. doi: 10.1016/j.jamda.2013.03.022 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. doi: 10.1093/gerona/glu010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Morley JE, von Haehling S, Anker SD, Vellas B (2014) From sarcopenia to frailty: a road less traveled. J Cachexia Sarcopenia Muscle 5:5–8. doi: 10.1007/s13539-014-0132-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cruz-jentoft AJ, Michel JP (2013) Sarcopenia: a useful paradigm for physical frailty. Eur Geriatr Med 4:102–105. doi: 10.1016/j.eurger.2013.02.009 CrossRefGoogle Scholar
  15. 15.
    Samper-Ternent R, Reyes-Ortiz C, Ottenbacher KJ, Cano CA (2016) Frailty and sarcopenia in Bogotá: results from the SABE Bogotá study. Aging Clin Exp Res. doi: 10.1007/s40520-016-0561-2 (ahead of print)PubMedGoogle Scholar
  16. 16.
    Walston J, Hadley E, Ferrucci L et al (2006) Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc 54:991–1001. doi: 10.1111/j.1532-5415.2006.00745.x CrossRefPubMedGoogle Scholar
  17. 17.
    Walston JD (2012) Sarcopenia in older adults. Curr Opin Rheumatol 24:623–627. doi: 10.1097/BOR.0b013e328358d59b CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ahmed N, Mandel R, Fain MJ (2007) Frailty: an emerging geriatric syndrome. Am J Med 120:748–753. doi: 10.1016/j.amjmed.2006.10.018 CrossRefPubMedGoogle Scholar
  19. 19.
    Bauer JM, Sieber CC (2008) Sarcopenia and frailty: a clinician’s controversial point of view. Exp Gerontol 43:674–678. doi: 10.1016/j.exger.2008.03.007 CrossRefPubMedGoogle Scholar
  20. 20.
    Cruz-Jentoft AJ, Landi F, Topinková E, Michel J (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 13:1–7. doi: 10.1097/MCO.0b013e328333c1c1 CrossRefPubMedGoogle Scholar
  21. 21.
    Hubbard RE, Lang IA, Llewellyn DJ, Rockwood K (2010) Frailty, body mass index, and abdominal obesity in older people. J Gerontol A Biol Sci Med Sci 65:377–381. doi: 10.1093/gerona/glp186 CrossRefPubMedGoogle Scholar
  22. 22.
    Bollwein J, Volkert D, Diekmann R et al (2013) Nutritional status according to the mini nutritional assessment (MNA(R)) and frailty in community dwelling older persons: a close relationship. J Nutr Health Aging 17:351–356. doi: 10.1007/s12603-013-0009-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Shikany JM, Barrett-Connor E, Ensrud KE et al (2014) Macronutrients, diet quality, and frailty in older men. J Gerontol A Biol Sci Med Sci 69:695–701. doi: 10.1093/gerona/glt196 CrossRefPubMedGoogle Scholar
  24. 24.
    Barillaro C, Liperoti R, Martone AM, Onder G, Landi F (2013) The new metabolic treatments for sarcopenia. Aging Clin Exp Res 25:119–127. doi: 10.1007/s40520-013-0030-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Newman AB, Lee JS, Visser M et al (2005) Weight change and the conservation of lean mass in old age: the health, aging and body composition study. Am J Clin Nutr 82:872–878 (quiz 915)PubMedGoogle Scholar
  26. 26.
    Morley JE (2013) Pathophysiology of the anorexia of aging. Curr Opin Clin Nutr Metab Care 16:27–32. doi: 10.1097/MCO.0b013e328359efd7 CrossRefPubMedGoogle Scholar
  27. 27.
    Landi F, Laviano A, Cruz-Jentoft AJ (2010) The anorexia of aging: is it a geriatric syndrome? J Am Med Dir Assoc 11:153–156. doi: 10.1016/j.jamda.2009.09.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Serra-Prat M, Mans E, Palomera E, Clavé P (2013) Gastrointestinal peptides, gastrointestinal motility, and anorexia of aging in frail elderly persons. Neurogastroenterol Motil 25:291–e245. doi: 10.1111/nmo.12055 CrossRefPubMedGoogle Scholar
  29. 29.
    Bartali B, Frongillo EA, Bandinelli S et al (2006) Low nutrient intake is an essential component of frailty in older persons. J Gerontol A Biol Sci Med Sci 61:589–593CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Smit E, Winters-Stone KM, Loprinzi PD, Tang AM, Crespo CJ (2013) Lower nutritional status and higher food insufficiency in frail older US adults. Br J Nutr 110:172–178. doi: 10.1017/S000711451200459X CrossRefPubMedGoogle Scholar
  31. 31.
    Kim JE, Lee YH, Huh JH, Kang DR, Rhee Y, Lim SK (2014) Early-stage chronic kidney disease, insulin resistance, and osteoporosis as risk factors of sarcopenia in aged population: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV), 2008–2009. Osteoporos Int 25:2189–2198. doi: 10.1007/s00198-014-2745-y CrossRefPubMedGoogle Scholar
  32. 32.
    Volpi E, Campbell WW, Dwyer JT et al (2013) Is the optimal level of protein intake for older adults greater than the recommended dietary allowance. J Gerontol A Biol Sci Med Sci 68:677–681. doi: 10.1093/gerona/gls229 CrossRefPubMedGoogle Scholar
  33. 33.
    Tieland M, Borgonjen-Van Den Berg K, van Loon LJ, de Groot LC (2012) Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr 51:173–179. doi: 10.1007/s00394-011-0203-6 CrossRefPubMedGoogle Scholar
  34. 34.
    Bauer J, Biolo G, Cederholm T et al (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE study group. J Am Med Dir Assoc 14:542–559. doi: 10.1016/j.jamda.2013.05.021 CrossRefPubMedGoogle Scholar
  35. 35.
    Deutz NE, Bauer JM, Barazzoni R et al (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr 33:929–936. doi: 10.1016/j.clnu.2014.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Houston DK, Ding J, Nicklas BJ et al (2009) Overweight and obesity over the adult life course and incident mobility limitation in older adults: the health, aging and body composition study. Am J Epidemiol 169:927–936. doi: 10.1093/aje/kwp007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL (2009) A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res 24:1827–1834. doi: 10.1359/jbmr.090513 CrossRefPubMedGoogle Scholar
  38. 38.
    Beasley JM, LaCroix AZ, Neuhouser ML et al (2010) Protein intake and incident frailty in the women’s health initiative observational study. J Am Geriatr Soc 58:1063–1071. doi: 10.1111/j.1532-5415.2010.02866.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bollwein J, Diekmann R, Kaiser MJ et al (2013) Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nürnberg. Nutr J 12:109. doi: 10.1186/1475-2891-12-109 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Valenzuela RE, Ponce JA, Morales-Figueroa GG, Muro KA, Carreón VR, Alemán-Mateo H (2013) Insufficient amounts and inadequate distribution of dietary protein intake in apparently healthy older adults in a developing country: implications for dietary strategies to prevent sarcopenia. Clin Interv Aging 8:1143–1148. doi: 10.2147/CIA.S49810 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213PubMedGoogle Scholar
  42. 42.
    Harris RC, Söderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83:367–374. doi: 10.1042/cs0830367 CrossRefGoogle Scholar
  43. 43.
    Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi: 10.1007/s00726-011-1132-7 CrossRefPubMedGoogle Scholar
  44. 44.
    Kley RA, Tarnopolsky MA, Vorgerd M (2011) Creatine for treating muscle disorders. Cochrane Database Syst Rev. doi: 10.1002/14651858.CD004760.pub3 PubMedGoogle Scholar
  45. 45.
    Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF (2004) The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci 75:1917–1924. doi: 10.1016/j.lfs.2003.11.036 CrossRefPubMedGoogle Scholar
  46. 46.
    Palus S, von Haehling S, Springer J (2014) Muscle wasting: an overview of recent developments in basic research. J Cachexia Sarcopenia Muscle 5:193–198. doi: 10.1007/s13539-014-0157-7 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rieu I, Balage M, Sornet C et al (2007) Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats. Nutrition 23:323–331. doi: 10.1016/j.nut.2006.12.013 CrossRefPubMedGoogle Scholar
  48. 48.
    Leenders M, van Loon LJ (2011) Leucine as a pharmaconutrient to prevent and treat sarcopenia and type 2 diabetes. Nutr Rev 69:675–689. doi: 10.1111/j.1753-4887.2011.00443.x CrossRefPubMedGoogle Scholar
  49. 49.
    Szcześniak KA, Ostaszewski P, Fuller JC, Ciecierska A, Sadkowski T (2015) Dietary supplementation of β-hydroxy-β-methylbutyrate in animals—a review. J Anim Physiol Anim Nutr (Berl) 99:405–417. doi: 10.1111/jpn.12234 CrossRefGoogle Scholar
  50. 50.
    Fitschen PJ, Wilson GJ, Wilson JM, Wilund KR (2013) Efficacy of β-hydroxy-β-methylbutyrate supplementation in elderly and clinical populations. Nutrition 29:29–36. doi: 10.1016/j.nut.2012.05.005 CrossRefPubMedGoogle Scholar
  51. 51.
    Wilson JM, Fitschen PJ, Campbell B et al (2013) International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr 10:6. doi: 10.1186/1550-2783-10-6 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dupuy C, Lauwers-Cances V, Van Kan GA et al (2013) Dietary vitamin D intake and muscle mass in older women. Results from a cross-sectional analysis of the EPIDOS study. J Nutr Health Aging 17:119–124. doi: 10.1007/s12603-012-0089-x CrossRefPubMedGoogle Scholar
  53. 53.
    Kim JS, Wilson JM, Lee SR (2010) Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. J Nutr Biochem 21:1–13. doi: 10.1016/j.jnutbio.2009.06.014 CrossRefPubMedGoogle Scholar
  54. 54.
    Kim J, Lee Y, Kye S, Chung YS, Kim KM (2015) Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 44:96–102. doi: 10.1093/ageing/afu028 CrossRefPubMedGoogle Scholar
  55. 55.
    Mulero J, Zafrilla P, Martinez-Cacha A (2011) Oxidative stress, frailty and cognitive decline. J Nutr Health Aging 15:756–760CrossRefPubMedGoogle Scholar
  56. 56.
    Hutchins-Wiese HL, Kleppinger A, Annis K et al (2013) The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J Nutr Health Aging 17:76–80. doi: 10.1007/s12603-012-0415-3 CrossRefPubMedGoogle Scholar
  57. 57.
    Gill TM, Gahbauer EA, Allore HG, Han L (2006) Transitions between frailty states among community-living older persons. Arch Intern Med 166:418–423. doi: 10.1001/archinte.166.4.418 CrossRefPubMedGoogle Scholar
  58. 58.
    Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43:748–759. doi: 10.1093/ageing/afu115 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Talegawkar SA, Bandinelli S, Bandeen-Roche K et al (2012) A higher adherence to a Mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women. J Nutr 142:2161–2166. doi: 10.3945/jn.112.165498 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kobayashi S, Asakura K, Suga H, Sasaki S, Three-generation SOWODAHSG (2013) High protein intake is associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr J 12:164.doi: 10.1186/1475-2891-12-164 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kim CO, Lee KR (2013) Preventive effect of protein-energy supplementation on the functional decline of frail older adults with low socioeconomic status: a community-based randomized controlled study. J Gerontol A Biol Sci Med Sci 68:309–316. doi: 10.1093/gerona/gls167 CrossRefPubMedGoogle Scholar
  62. 62.
    Brown JC, Harhay MO, Harhay MN (2016) Physical activity, diet quality, and mortality among sarcopenic older adults. Aging Clin Exp Res. doi: 10.1007/s40520-016-0559-9 (ahead of print)PubMedGoogle Scholar
  63. 63.
    Cesari M, Demougeot L, Boccalon H, Guyonnet S, Vellas B, Andrieu S (2014) The multidomain intervention to preveNt disability in ElDers (MINDED) project: rationale and study design of a pilot study. Contemp Clin Trials 38:145–154. doi: 10.1016/j.cct.2014.04.006 CrossRefPubMedGoogle Scholar
  64. 64.
    Tikkanen P, Lonnroos E, Sipila S, Nykanen I, Sulkava R, Hartikainen S (2014) Effects of comprehensive geriatric assessment-based individually targeted interventions on mobility of pre-frail and frail community-dwelling older people. Geriatr Gerontol Int 15:80–88. doi: 10.1111/ggi.12231 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alfonso J. Cruz-Jentoft
    • 1
  • Eva Kiesswetter
    • 2
  • Michael Drey
    • 2
  • Cornel C. Sieber
    • 2
  1. 1.Servicio de GeriatríaHospital Universitario Ramón y Cajal (IRYCIS)MadridSpain
  2. 2.Institute for Biomedicine of AgingUniversity of Erlangen-NürnbergNurembergGermany

Personalised recommendations