Aging Clinical and Experimental Research

, Volume 29, Supplement 1, pp 7–13 | Cite as

Nodular thyroid disease in the elderly: novel molecular approaches for the diagnosis of malignancy

  • Salvatore Sorrenti
  • Enke Baldini
  • Francesco Tartaglia
  • Antonio Catania
  • Stefano Arcieri
  • Daniele Pironi
  • Pier Giorgio Calò
  • Angelo Filippini
  • Salvatore Ulisse


Epithelial thyroid cancers (TC) comprise two differentiated histotypes (DTC), the papillary (PTC) and the follicular (FTC) thyroid carcinomas which, following dedifferentiation, are assumed to give rise to the poorly differentiated thyroid carcinomas and the rare, but highly aggressive and invariably fatal, anaplastic thyroid carcinomas. Although thyroid cancer mortality has not been changed, its annual incidence has increased over the last two decades, mainly because of the improved ability to diagnose malignant transformation in small non-palpable thyroid nodules. Despite DTC patients have a favorable prognosis, aggressive disease is more frequently observed in the elderly showing a higher disease-specific mortality. Of relevance is the high prevalence of nodular thyroid disease in aged patients being higher than 90%, in women older than 60 year, and 60% in men older than 80 year. This implies a careful evaluation of thyroid nodules in this group of patients in order to exclude malignancy. In fact, despite the tremendous progress in the comprehension of the underlying molecular mechanisms deregulated in DTC progression, several aspects of their clinical management remain to be solved and novel diagnostic strategies are sorely needed. Here, we will attempt to review new molecular approaches, which are currently being exploited in order to ameliorate the diagnosis of thyroid nodules.


Thyroid cancer Thyroid nodule Molecular diagnosis Aging 



Thyroid carcinoma


Differentiated thyroid carcinoma


Papillary thyroid carcinoma


Follicular thyroid carcinoma


Poorly differentiated thyroid carcinoma


Anaplastic thyroid carcinoma


Fine needle aspiration cytology


Atypia of undetermined significance/follicular lesion of undetermined significance


Follicular neoplasm/suspicious for follicular neoplasm


Mitogen-activated protein kinase


Epithelial-to-mesenchymal transition


Compliance with ethical standards

Conflict of interest


Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.


  1. 1.
    National Cancer Institute at the National Institutes of Health.
  2. 2.
    NikiforovYE Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7:569–580CrossRefGoogle Scholar
  3. 3.
    Roman SA (2003) Endocrine tumors: evaluation of the thyroid nodule. Curr Opin Oncol 15:66–70CrossRefPubMedGoogle Scholar
  4. 4.
    Welker MJ, Orlov D (2003) Thyroid nodules. Am Fam Phys 67:559–566Google Scholar
  5. 5.
    Mekel M, Stephen AE, Gaz RD et al (2009) Thyroid surgery in octogenarians is associated with higher complication rates. Surgery 146:913–921CrossRefPubMedGoogle Scholar
  6. 6.
    Seybt MW, Khichi S, Terry DJ (2009) Thyroidectomy safety of thyroid surgery in an aging population. Arch Otolaryngol Head Neck Surg 135:1041–1044CrossRefPubMedGoogle Scholar
  7. 7.
    Rukhman N, Silverberg A (2011) Thyroid cancer in older men. Aging Male 14:91–98CrossRefPubMedGoogle Scholar
  8. 8.
    Gervasi R, Orlando G, Lerose MA et al (2012) Thyroid surgery in geriatric patients: a literature review. BMC Surg 12(Suppl. 1):S16CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Falvo L, Catania A, Sorrenti S et al (2004) Prognostic significance of the age factor in thyroid cancer: statistical analysis. J Surg Oncol 88:217–222CrossRefPubMedGoogle Scholar
  10. 10.
    Wang CC, Friedman L, Kennedy GC et al (2011) A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid 21:243–251CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lin JD, Chao TC, Huang BY et al (2005) Thyroid cancer in the thyroid nodules evaluated by ultrasonography and fine-needle aspiration cytology. Thyroid 15:708–717CrossRefPubMedGoogle Scholar
  12. 12.
    Belfiore A, La Rosa GL, La Porta GA et al (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369CrossRefPubMedGoogle Scholar
  13. 13.
    American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214CrossRefGoogle Scholar
  14. 14.
    Cantisani V, Grazhdani H, Ricci P et al (2014) Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur Radiol 24:143–150CrossRefPubMedGoogle Scholar
  15. 15.
    Gharib H (1994) Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc 69:44–49CrossRefPubMedGoogle Scholar
  16. 16.
    Hamburger JI (1994) Diagnosis thyroid nodules by fine needle biopsy: use and abuse. J Clin Endocrinol Metab 79:335–339PubMedGoogle Scholar
  17. 17.
    Baloch ZW, Sack MJ, Yu GH et al (1998) Fine-needle aspiration of thyroid: an institutional experience. Thyroid 8:565–569CrossRefPubMedGoogle Scholar
  18. 18.
    Cibas ES, Ali SZ (2009) The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 132:658–665CrossRefPubMedGoogle Scholar
  19. 19.
    Baloch ZW, LiVolsi VA, Asa SL et al (2008) Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol 36:425–437CrossRefPubMedGoogle Scholar
  20. 20.
    Florentine BD, Staymates B, Rabadi M et al (2006) Cancer Committee of the Henry Mayo Newhall Memorial Hospital: the reliability of fine-needle aspiration biopsy as the initial diagnostic procedure for palpable masses: a 4-year experience of 730 patients from a community hospital-based outpatient aspiration biopsy clinic. Cancer 107:406–416CrossRefPubMedGoogle Scholar
  21. 21.
    Cignarelli M, Triggiani V, Ciampolillo A et al (2001) High frequency of incidental diagnosis of extrathyroidal neoplastic diseases at the fine-needle aspiration biopsy of laterocervical lymph nodes in patients with thyroid nodules. Thyroid 11:65–71CrossRefPubMedGoogle Scholar
  22. 22.
    Ustün M, Risberg B, Davidson B et al (2002) Cystic change in metastatic lymph nodes: a common diagnostic pitfall in fine-needle aspiration cytology. Diagn Cytopathol 27:387–392CrossRefPubMedGoogle Scholar
  23. 23.
    Kessler A, Rappaport Y, Blank A et al (2003) Cystic appearance of cervical lymph nodes is characteristic of metastatic papillary thyroid carcinoma. J Clin Ultrasound 1:21–25CrossRefGoogle Scholar
  24. 24.
    Sherman SI (2003) Thyroid carcinoma. Lancet 361:501–511CrossRefPubMedGoogle Scholar
  25. 25.
    Calò PG, Medas F, Pisano G et al (2013) Differentiated thyroid cancer: indications and extent of central neck dissection—our experience. Int J Surg Oncol 2013:625193PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249CrossRefPubMedGoogle Scholar
  27. 27.
    Eustatia-Rutten CF, Corssmit EP, Biermasz NR et al (2006) Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab 91:313–319CrossRefPubMedGoogle Scholar
  28. 28.
    Kwong N, Medici M, Angell TE et al (2015) The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab 100:4434–4440CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jonklaas J, Nogueras-Gonzalez G, Munsell M et al (2012) The impact of age and gender on papillary thyroid cancer survival. J Clin Endocrinol Metab 97:E878–E887CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Diaconescu MR, Glod M, Costea I (2016) Clinical features and surgical treatment of thyroid pathology in patients over 65 years. Chirurgia 111:120–125CrossRefPubMedGoogle Scholar
  31. 31.
    McLeod DS, Carruthers K, Kevat DA (2015) Optimal differentiated thyroid cancer management in the elderly. Drugs Aging 32:283–294CrossRefPubMedGoogle Scholar
  32. 32.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  33. 33.
    Shahedian B, Shi Y, Zou M et al (2001) Thyroid carcinoma is characterized by genomic instability: evidence from p53 mutations. Mol Genet Metab 72:155–163CrossRefPubMedGoogle Scholar
  34. 34.
    Wressmann VB, Ghossein RA, Patel SG et al (2002) Genome-wide appraisal of thyroid cancer progression. Am J Pathol 161:1549–1556CrossRefGoogle Scholar
  35. 35.
    Patel KN, Shaha AR (2006) Poorly differentiated and anaplastic thyroid cancer. Cancer Control 3:119–128Google Scholar
  36. 36.
    Nikiforov YE (2009) Diagnostic pathology and molecular genetics of the thyroid. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  37. 37.
    Kondo T, Ezzat S, Asa SL (2006) Pathogenic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306CrossRefPubMedGoogle Scholar
  38. 38.
    Saavedra HI, Knauf JA, Shirokawa JM et al (2000) The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 19:3948–3954CrossRefPubMedGoogle Scholar
  39. 39.
    Morgan WF, Sowa MB (2005) Effects of ionizing radiation in nonirradiated cells. Proc Natl Acad Sci USA 102:14127–14128CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ito Y, Miyoshi E, Sasaki N et al (2004) Polo-like kinase 1 overexpression is an early event in the progression of papillary carcinoma. Br J Cancer 90:414–418CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Salvatore G, Nappi TC, Salerno P et al (2007) A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res 67:10148–10158CrossRefPubMedGoogle Scholar
  42. 42.
    Ulisse S, Delcros JG, Baldini E et al (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119:275–282CrossRefPubMedGoogle Scholar
  43. 43.
    Baldini E, D’Armiento M, Ulisse S (2014) A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol 2014:816430CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kimura ET, Nikiforova MN, Zhu Z et al (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457PubMedGoogle Scholar
  45. 45.
    Cohen Y, Xing M, Mambo E et al (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627CrossRefPubMedGoogle Scholar
  46. 46.
    Suárez HG, Du Villard JA, Caillou B (1988) Detection of activated ras oncogenes in human thyroid carcinomas. Oncogene 2:403–406PubMedGoogle Scholar
  47. 47.
    Lemoine NR, Mayall ES, Wyllie FS et al (1988) Activated ras oncogenes in human thyroid cancers. Cancer Res 48:4459–4463PubMedGoogle Scholar
  48. 48.
    Pierotti MA, Bongarzone I, Borrello MG et al (1995) Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18:130–133CrossRefPubMedGoogle Scholar
  49. 49.
    Grieco M, Santoro M, Berlingieri MT et al (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563CrossRefPubMedGoogle Scholar
  50. 50.
    Soares P, Trovisco V, Rocha AS et al (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–4580CrossRefPubMedGoogle Scholar
  51. 51.
    Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13:184–199CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pratilas CA, Taylor BS, Ye Q et al (2009) V600EBRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA 106:4519–4524CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    The Cancer Genome Atlas Research Network (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159:676–690CrossRefGoogle Scholar
  54. 54.
    Adeniran AJ, Zhu Z, Gandhi M et al (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30:216–222CrossRefPubMedGoogle Scholar
  55. 55.
    Ellis RJ, Wang Y, Stevenson HS et al (2014) Genome-wide methylation patterns in papillary thyroid cancer are distinct based on histological subtype and tumor genotype. J Clin Endocrinol Metab 99:E329–E337CrossRefPubMedGoogle Scholar
  56. 56.
    Giordano TJ, Kuick R, Thomas DG et al (2005) Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24:6646–6656CrossRefPubMedGoogle Scholar
  57. 57.
    Caria P, Dettori T, Frau DV et al (2013) Assessing RET/PTC in thyroid nodule fine-needle aspirates: the FISH point of view. Endocr Relat Cancer 20:527–536CrossRefPubMedGoogle Scholar
  58. 58.
    Giordano TJ, Au AY, Kuick R et al (2006) Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8-PPARG translocation. Clin Cancer Res 12:1983–1993CrossRefPubMedGoogle Scholar
  59. 59.
    Omur O, Baran Y (2014) An update on molecular biology of thyroid cancer. Crit Rev Oncol Hematol 90:233–252CrossRefPubMedGoogle Scholar
  60. 60.
    Ito T, Seyama T, Mizuno T et al (1992) Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res 52:1369–1371PubMedGoogle Scholar
  61. 61.
    Donghi R, Longoni A, Pilotti S et al (1993) Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91:1753–1760CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Garcia-Rostan G, Camp RL, Herrero A et al (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158:987–996CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Miyake N, Maeta H, Horie S et al (2001) Absence of mutations in the beta-catenin and adenomatous polyposis coli genes in papillary and follicular thyroid carcinomas. Pathol Int 51:680–685CrossRefPubMedGoogle Scholar
  64. 64.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558CrossRefPubMedGoogle Scholar
  65. 65.
    Vasko V, Espinosa AV, Scouten W et al (2007) Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 104:2803–2808CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Baldini E, Toller M, Graziano FM et al (2004) Expression of matrix metalloproteinases and their specific inhibitors (TIMPs) in normal and different human thyroid tumor cell lines. Thyroid 14:881–888CrossRefPubMedGoogle Scholar
  67. 67.
    Ulisse S, Baldini E, Toller M et al (2006) Differential expression of the components of the plasminogen activating system in human thyroid tumour derived cell lines and papillary carcinomas. Eur J Cancer 42:2631–2638CrossRefPubMedGoogle Scholar
  68. 68.
    Ulisse S, Baldini E, Sorrenti S et al (2011) High expression of the urokinase plasminogen activator and its cognate 1 receptor associates with advanced stages and reduced disease-free interval in papillary thyroid carcinoma. J Clin Endocrinol Metab 96:504–508CrossRefPubMedGoogle Scholar
  69. 69.
    Baldini E, Sorrenti S, D’Armiento E et al (2012) The urokinase plasminogen activating system in thyroid cancer: clinical implication. G Chir 33:305–310PubMedGoogle Scholar
  70. 70.
    Ulisse S, Baldini E, Sorrenti S et al (2012) In papillary thyroid carcinoma BRAFV600E is associated with increased expression of the urokinase plasminogen activator and its cognate receptor, but not with disease-free interval. Clin Endocrinol 77:780–786CrossRefGoogle Scholar
  71. 71.
    Bongiovanni M, Spitale A, Faquin WC et al (2012) The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol 56:333–339CrossRefPubMedGoogle Scholar
  72. 72.
    Xing M, Haugen B, Schlumberger M (2013) Progress in molecular-based management of differentiated thyroid cancer. Lancet 381:1058–1069CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Eszlinger M, Hegedüs L, Paschke R (2014) Ruling in or ruling out thyroid malignancy by molecular diagnostics of thyroid nodule. Best Pract Res Clin Endocrinol Metab 28:545–557CrossRefPubMedGoogle Scholar
  74. 74.
    Nishino M (2015) Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol. doi: 10.1002/cncy.21612 PubMedGoogle Scholar
  75. 75.
    Bernet V, Hupart KH, Parangi S et al (2015) Molecular diagnostic testing of thyroid nodule with indeterminate cytology. Endocr Pract 20:360–363CrossRefGoogle Scholar
  76. 76.
    Baldini E, Tuccilli C, Prinzi N et al (2013) New molecular approaches in the diagnosis and prognosis of thyroid cancer patients. Glob J Oncol 1:20–29Google Scholar
  77. 77.
    Ferris RL, Baloch Z, Bernet V et al (2015) American thyroid association statement on surgical application of molecular profiling for thyroid nodules: current impact on preoperative decision making. Thyroid 25:760–768CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nikiforov YE, Steward DL, Robinson-Smith TM et al (2009) Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94:2092–2098CrossRefPubMedGoogle Scholar
  79. 79.
    Nikiforov YE, Ohori NP, Hodak SP et al (2011) Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab 96:3390–3397CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Moses W, Weng J, Sansano I et al (2010) Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg 34:2589–2594CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Cantara S, Capezzone M, Marchisotta S et al (2010) Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab 95:1365–1369CrossRefPubMedGoogle Scholar
  82. 82.
    Nikiforova MN, Wald AI, Roy S et al (2013) Targeted next-generation sequencing panel (RhyroSeq) for detection of mutation in thyroid cancer. J Clin Endocrinol Metab 98:E1852–E1860CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Nikiforov YE, Carty SE, Chiosea SI et al (2014) Highly accurate diagnosis of cancer in thyroid nodule with follicular neoplasm/suspicious for follicular neoplasm cytology by ThroSeq v2 next-generation sequencing assay. Cancer 120:3627–3634CrossRefPubMedGoogle Scholar
  84. 84.
    Le Mercier M, D’Haene N, De Nève N et al (2015) Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology 66:215–224CrossRefPubMedGoogle Scholar
  85. 85.
    de la Chapelle A, Jazdzewski K (2011) MicroRNA in thyroid cancer. J Clin Endocrinol Metab 96:3326–3336CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Shen R, Liyanarachchi S, Li W et al (2012) MicroRNA signature in thyroid fine needle aspiration cytology applied to “Atypia of undetermined significance “cases. Thyroid 22:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Keutgen XM, Filicori F, Crowley MJ et al (2012) A panel of four miRNA accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res 18:2032–2038CrossRefPubMedGoogle Scholar
  88. 88.
    Stokowy T, Wojtaś B, Krajewska J et al (2012) A two miRNA classifier differentiates follicular thyroid carcinomas from follicular thyroid adenomas. Mol Cell Endocrinol 399:43–49CrossRefGoogle Scholar
  89. 89.
    Labourier E, Shifrin A, Busseniers AE et al (2015) Molecular testing of miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 100:2743–2750CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wiseman SM, Haddad Z, Walker B et al (2013) Whole-transcriptome profiling of thyroid nodules identifies expression-based signatures for accurate thyroid cancer diagnosis. J Clin Endocrinol Metab 98:4072–4079CrossRefPubMedGoogle Scholar
  91. 91.
    Chudova D, Wild JI, Wang ET et al (2010) Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab 95:5296–5304CrossRefPubMedGoogle Scholar
  92. 92.
    Alexander EK, Kennedy GC, Baloch ZW et al (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367:705–715CrossRefPubMedGoogle Scholar
  93. 93.
    Walsh PS, Wild JI, Tom EY et al (2012) Analytical performance verification of a molecular diagnostic for cytology-indeterminate thyroid nodules. J Clin Endocrinol Metab 97:E2297–E2306CrossRefPubMedGoogle Scholar
  94. 94.
    Faquin WC (2013) Can a gene-expression classifier with high negative predictive value solve the indeterminate thyroid fine-needle aspiration dilemma? Cancer Cytopathol 121:116–119CrossRefPubMedGoogle Scholar
  95. 95.
    Kwak JY, Kim EK (2013) Indeterminate thyroid nodules—added testing, added value? Nat Rev Endocrinol 9:321–323CrossRefPubMedGoogle Scholar
  96. 96.
    Kloos RT, Reynolds JD, Walsh PS et al (2013) Does addition of BRAF V600E Mutation testing modify sensitivity or specificity of the Afirma gene expression classifier in cytologically indeterminate thyroid nodules? J Clin Endocrinol Metab 98:E761–E768CrossRefPubMedGoogle Scholar
  97. 97.
    Harrel RM, Bimston DN (2014) Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract 20:364–369CrossRefGoogle Scholar
  98. 98.
    McIver B, Castro MR, Morris JC et al (2014) An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 99:4069–4077CrossRefPubMedGoogle Scholar
  99. 99.
    Krane JF (2014) Lessons from early clinical experience with the Afirma gene expression classifier. Cancer Cytopathol 122:715–719CrossRefPubMedGoogle Scholar
  100. 100.
    Marti JL, Avadhani V, Donatelli LA et al (2015) Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol 22:3996–4001CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Noureldine SI, Olson MT, Agrawal N et al (2015) Effect of gene expression classifier molecular testing on the surgical decision-making process for patients with thyroid nodules. JAMA Otolaryngol Head Neck Surg 141:1082–1088CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Salvatore Sorrenti
    • 1
  • Enke Baldini
    • 1
  • Francesco Tartaglia
    • 1
  • Antonio Catania
    • 1
  • Stefano Arcieri
    • 1
  • Daniele Pironi
    • 1
  • Pier Giorgio Calò
    • 2
  • Angelo Filippini
    • 1
  • Salvatore Ulisse
    • 1
  1. 1.Department of Surgical Sciences“Sapienza” University of RomeRomeItaly
  2. 2.Department of Surgical SciencesUniversity of CagliariCagliariItaly

Personalised recommendations