Advertisement

Aging Clinical and Experimental Research

, Volume 29, Issue 4, pp 579–590 | Cite as

Recovery from muscle weakness by exercise and FES: lessons from Masters, active or sedentary seniors and SCI patients

  • Ugo Carraro
  • Helmut Kern
  • Paolo Gava
  • Christian Hofer
  • Stefan Loefler
  • Paolo Gargiulo
  • Kyle Edmunds
  • Íris Dröfn Árnadóttir
  • Sandra Zampieri
  • Barbara Ravara
  • Francesco Gava
  • Alessandra Nori
  • Valerio Gobbo
  • Stefano Masiero
  • Andrea Marcante
  • Alfonc Baba
  • Francesco Piccione
  • Sheila Schils
  • Amber Pond
  • Simone MosoleEmail author
Review

Abstract

Many factors contribute to the decline of skeletal muscle that occurs as we age. This is a reality that we may combat, but not prevent because it is written into our genome. The series of records from World Master Athletes reveals that skeletal muscle power begins to decline at the age of 30 years and continues, almost linearly, to zero at the age of 110 years. Here we discuss evidence that denervation contributes to the atrophy and slowness of aged muscle. We compared muscle from lifelong active seniors to that of sedentary elderly people and found that the sportsmen have more muscle bulk and slow fiber type groupings, providing evidence that physical activity maintains slow motoneurons which reinnervate muscle fibers. Further, accelerated muscle atrophy/degeneration occurs with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the nervous system with complete loss of muscle fibers within 5–8 years. We used histological morphometry and Muscle Color Computed Tomography to evaluate muscle from these peculiar persons and reveal that contraction produced by home-based Functional Electrical Stimulation (h-bFES) recovers muscle size and function which is reversed if h-bFES is discontinued. FES also reverses muscle atrophy in sedentary seniors and modulates mitochondria in horse muscles. All together these observations indicate that FES modifies muscle fibers by increasing contractions per day. Thus, FES should be considered in critical care units, rehabilitation centers and nursing facilities when patients are unable or reluctant to exercise.

Keywords

Aging Master Athletes Muscle Denervation and type grouping FES recovery Muscle Color Computed Tomography 

Notes

Acknowledgments

This work was supported by the European Regional Development Fund—Cross Border Cooperation Programme Slovakia—Austria 2007–2013 (Interreg-IVa), project Mobilität im Alter, MOBIL, N_00033 (Partners: Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Austria, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria, and Faculty of Physical Education and Sports, Comenius University in Bratislava, Slovakia); Austrian national co-financing of the Austrian Federal Ministry of Science and Research; Ludwig Boltzmann Society (Vienna, Austria) and supported by EU Commission Shared Cost Project RISE (Contract No. QLG5-CT-2001-02191) co-financed by the Austrian Ministry of Science. Some of the research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number NIH NIAMS 1R03AR053706-01A2 to ALP. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Ugo Carraro thanks the IRCCS Fondazione Ospedale San Camillo, Venice, Italy for hospitality and scientific support.

Compliance with ethical standards

Conflict of interest

None.

Ethical approval

All participants in the senior sportsmen studies were healthy and declared not to have any specific physical/disease issues (for detailed inclusion and exclusion criteria, see ClinicalTrials.gov: NCT01679977). All of the senior sportsmen declared to have a lifelong (30 years) history of high-level training. We certify that all applicable rules concerning the ethical use of human volunteers were followed during the course of this research (approval of ethical committee, Vienna, Austria: EK-02-068-0702).

Human and Animal Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual partecipants included in the study.

References

  1. 1.
    Lømo T (2014) The response of denervated muscle to long-term stimulation (1985, revisited here in 2014). Eur J Transl Myol Basic Appl Myol 24:13–19Google Scholar
  2. 2.
    Mitchell WK, Williams J, Atherton P et al (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260. doi: 10.3389/fphys.2012.00260 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hepple RT, Rice CL (2015) Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. doi: 10.1113/JP270561 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gava P, Kern H, Carraro U (2015) Age-associated power decline from running, jumping, and throwing male masters world records. Exp Aging Res 41:115–135. doi: 10.1080/0361073X.2015.1001648 CrossRefPubMedGoogle Scholar
  5. 5.
    Gordon T, English AW (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336–350. doi: 10.1111/ejn.13005 CrossRefPubMedGoogle Scholar
  6. 6.
    Hill AV (1925) The physiological basis of athletic records. Sci Month 2:409–428Google Scholar
  7. 7.
    Mosole S, Rossini K, Kern H et al (2013) Significant increase of vastus lateralis reinnervation in 70-year sportsmen with a lifelong history of high-level exercise. Eur J Transl Myol Basic Appl Myol 23:117–122Google Scholar
  8. 8.
    Mosole S, Carraro U, Kern H et al (2014) Long-term high-level exercise promotes muscle reinnervation with age. J Neuropathol Exp Neurol 73:284–294. doi: 10.1097/NEN.0000000000000032 CrossRefPubMedGoogle Scholar
  9. 9.
    Stålberg E, Fawcett PR (1982) Macro EMG in healthy subjects of different ages. J Neurol Neurosurg Psychiatry 45:870–878CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727. doi: 10.1152/japplphysiol.00347.2003 CrossRefPubMedGoogle Scholar
  11. 11.
    Lexell J, Downham DY (1991) The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol 81:377–381CrossRefPubMedGoogle Scholar
  12. 12.
    Ling SM, Conwit RA, Ferrucci L et al (2009) Age-associated changes in motor unit physiology: observations from the Baltimore Longitudinal Study of Aging. Arch Phys Med Rehabil 90:1237–1240CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lexell J, Taylor CC, Sjostrom M (1988) What is the cause of ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294CrossRefPubMedGoogle Scholar
  14. 14.
    Doherty TJ, Vandervoort AA, Taylor AW et al (1985) Effects of motor unit losses on strength in older men and women. J Appl Physiol 1993:868–874Google Scholar
  15. 15.
    Payne AM, Delbono O (2004) Neurogenesis of excitation-contraction uncoupling in aging skeletal muscle. Exerc Sport Sci Rev 32:36–40CrossRefPubMedGoogle Scholar
  16. 16.
    Delbono O (2003) Neural control of aging skeletal muscle. Aging Cell 2:21–29CrossRefPubMedGoogle Scholar
  17. 17.
    Zampieri S, Pietrangelo L, Loefler S et al (2015) Lifelong physical exercise delays age-associated skeletal muscle decline. J Gerontol A Biol Sci Med Sci 70:163–173. doi: 10.1093/gerona/glu006 CrossRefPubMedGoogle Scholar
  18. 18.
    Messi ML, Li T, Wang ZM et al (2015) Resistance training enhances skeletal muscle innervation without modifying the number of satellite cells or their myofiber association in obese older adults. J Gerontol A Biol Sci Med Sci. pii:glv176Google Scholar
  19. 19.
    Dow DE, Dennis RG, Faulkner JA (2005) Electrical stimulation attenuates denervation and age-related atrophy in extensor digitorum longus muscles of old rats. J Gerontol A Biol Sci Med Sci 60:416–424CrossRefPubMedGoogle Scholar
  20. 20.
    Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166CrossRefPubMedGoogle Scholar
  21. 21.
    Kern H, Pelosi L, Coletto L et al (2011) Atrophy/hypertrophy cell signaling in muscles of young athletes trained with vibrational-proprioceptive stimulation. Neurol Res 33:998–1009CrossRefPubMedGoogle Scholar
  22. 22.
    Zampieri S, Mosole S, Löfler S et al (2015) Physical exercise in Aging: nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people. Eur J Transl Myol Basic Appl Myol 25:237–242CrossRefGoogle Scholar
  23. 23.
    Kern H, Barberi L, Löfler S et al (2014) Electrical stimulation counteracts muscle decline in seniors. Front Aging Neurosci 6:189CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carnio S, LoVerso F, Baraibar MA et al (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521. doi: 10.1016/j.celrep.2014.07.061 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Barberi L, Scicchitano BM, Musaro A (2015) Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors. Eur J Transl Myol Basic Appl Myol 25:231–236CrossRefGoogle Scholar
  26. 26.
    Scicchitano BM, Rizzuto E, Musarò A (2009) Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY) 1(5):451–457CrossRefGoogle Scholar
  27. 27.
    Vinciguerra M, Musaro A, Rosenthal N (2010) Regulation of muscle atrophy in aging and disease. Adv Exp Med Biol 694:211–233CrossRefPubMedGoogle Scholar
  28. 28.
    Carosio S, Berardinelli MG, Aucello M et al (2011) Impact of ageing on muscle cell regeneration. Ageing Res Rev 10:35–42CrossRefPubMedGoogle Scholar
  29. 29.
    Barberi L, Scicchitano BM, De Rossi M et al (2013) Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology 14:273–292CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Musarò A (2014) The basis of muscle regeneration. Adv Biol 2014:1–16CrossRefGoogle Scholar
  31. 31.
    Snijders T, Verdijk LB, van Loon LJ (2009) The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev 8:328–338CrossRefPubMedGoogle Scholar
  32. 32.
    Mikkelsen UR, Langberg H, Helmark IC et al (2009) Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. J Appl Physiol 107:1600–1611CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Farup J, Rahbek SK, Riis S et al (2014) Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. J Appl Physiol 117:898–909CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Farup J, Rahbek SK, Knudsen IS et al (2014) Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids 46:2503–2516CrossRefPubMedGoogle Scholar
  35. 35.
    McKay BR, Ogborn DI, Bellamy LM et al (2012) Myostatin is associated with age related human muscle stem cell dysfunction. FASEB J 26:2509–2521CrossRefPubMedGoogle Scholar
  36. 36.
    McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90CrossRefPubMedGoogle Scholar
  37. 37.
    Sandri M, Barberi L, Bijlsma AY et al (2013) Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology 14:303–323CrossRefPubMedGoogle Scholar
  38. 38.
    Kadi F, Schjerling P, Andersen LL et al (2004) The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles. Physiol J 558:1005–1012CrossRefGoogle Scholar
  39. 39.
    Mackey AL, Holm L, Reitelseder S et al (2010) Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity. Scand J Med Sci Sports 21:773–782CrossRefPubMedGoogle Scholar
  40. 40.
    Adamo ML, Farrar RP (2006) Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res Rev 5:310–331CrossRefPubMedGoogle Scholar
  41. 41.
    Wallace JD, Cuneo RC, Baxter R et al (1999) Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J Clin Endocrinol Metab 84:3591–3601PubMedGoogle Scholar
  42. 42.
    Kostka T, Patricot MC, Mathian B et al (2003) Anabolic and catabolic hormonal responses to experimental two-set low-volume resistance exercise in sedentary and active elderly people. Aging Clin Exp Res 15:123–130CrossRefPubMedGoogle Scholar
  43. 43.
    Berg U, Bang P (2004) Exercise and circulating insulin-like growth factor I. Horm Res 62:50–58PubMedGoogle Scholar
  44. 44.
    Pelosi L, Berardinelli MG, De Pasquale L (2015) Functional and morphological improvement of dystrophic muscle by interleukin 6 receptor blockade. EBioMedicine 2:274–275CrossRefGoogle Scholar
  45. 45.
    Nieto-Estévez V, Defterali Ç, Vicario-Abejón C (2016) IGF-I: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci 10:52. doi: 10.3389/fnins.2016.00052 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Apel PJ, Ma J, Callahan M et al (2010) Effect of locally delivered IGF-1 on nerve regeneration during aging: an experimental study in rats. Muscle Nerve 41:335–341. doi: 10.1002/mus.21485 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang J, Jokerst JV (2016) Stem cell imaging: tools to improve cell delivery and viability. Stem Cells Int 2016:9240652. doi: 10.1155/2016/9240652 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Tezuka T, Inoue A, Hoshi T et al (2014) The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses. Proc Natl Acad Sci USA 111:16556–16561. doi: 10.1073/pnas.1408409111 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Krenn M, Haller M, Bijak M et al (2011) Safe neuromuscular electrical stimulator designed for the elderly. Artif Organs 35:253–256CrossRefPubMedGoogle Scholar
  50. 50.
    He Y, Huang C, Lin X et al (2013) MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95:1355–1359CrossRefPubMedGoogle Scholar
  51. 51.
    Carraro U, Franceschi C (1997) Apoptosis of skeletal and cardiac muscles and physical exercise. Aging 9(1–2):19–34 (Review) PubMedGoogle Scholar
  52. 52.
    Hamar D (2015) Universal linear motor driven Leg Press Dynamometer and concept of Serial Stretch Loading. Eur J Transl Myol Basic Appl Myol 25:215–219CrossRefGoogle Scholar
  53. 53.
    Cvecka J, Tirpakova V, Sedliak M et al (2015) Physical activity in elderly. Eur J Transl Myol Basic Appl Myol 25:249–252CrossRefGoogle Scholar
  54. 54.
    Sarabon N, Löfler S, Hosszu G et al (2015) Mobility test protocols for the elderly: a methodological note. Eur J Transl Myol Basic Appl Myol 25:253–256CrossRefGoogle Scholar
  55. 55.
    Kern H (1995) Funktionelle Elektrostimulation Paraplegischer Patienten. Österreichi sche Zeitschrift für Physikalische Medizin: ÖZPM 5:1–75. ISSN 1021-4348Google Scholar
  56. 56.
    Kern H, Boncompagni S, Rossini K et al (2004) Long-term denervation in humans causes degeneration of both contractile and excitation contraction coupling apparatus, which is reversible by functional electrical stimulation (FES). A role for myofiber regeneration? J Neuropathol Exp Neurol 63:919–931CrossRefPubMedGoogle Scholar
  57. 57.
    Kern H, Rossini K, Carraro U et al (2005) Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion. J Rehabil Res Dev 42:43–53CrossRefPubMedGoogle Scholar
  58. 58.
    Boncompagni S, Kern H, Rossini K et al (2007) Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci USA 104:19339–19344CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kern H, Hofer C, Mayr W (2008) Protocols for clinical work package of the European project RISE. Eur J Transl Myol Basic Appl Myol 18:39–44Google Scholar
  60. 60.
    Kern H, Carraro U, Adami N et al (2010) One year of home-based Functional Electrical Stimulation (FES) in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol Res 32:5–12. doi: 10.1189/184313209X385644 CrossRefPubMedGoogle Scholar
  61. 61.
    Kern H, Carraro U, Adami N et al (2010) Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabil Neural Repair 24:709–721. doi: 10.1177/1545968310366129 CrossRefPubMedGoogle Scholar
  62. 62.
    Rossini K, Zanin ME, Carraro U (2002) To stage and quantify regenerative myogenesis in human long-term permanent denervated muscle. Basic Appl Myol 12:277–287Google Scholar
  63. 63.
    Carraro U, Rossini K, Mayr W et al (2005) Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs 29:187–191CrossRefPubMedGoogle Scholar
  64. 64.
    Kern H, Hofer C, Mödlin M et al (2008) Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI. Spinal Cord 46:293–304CrossRefPubMedGoogle Scholar
  65. 65.
    Kern H, Carraro U (2014) Home-based Functional Electrical Stimulation (h-b FES) for long-term denervated human muscle: history, basics, results and perspectives of the Vienna Rehabilitation Strategy. Eur J Transl Myol Basic Appl Myol 24:27–40Google Scholar
  66. 66.
    Gargiulo P, Helgason T, Reynisson PJ et al (2011) Monitoring of muscle and bone recovery in spinal cord injury patients treated with electrical stimulation using three-dimensional imaging and segmentation techniques: methodological assessment. Artif Organs 35:275–281. doi: 10.1111/j.1525-1594.2011.01214.x CrossRefPubMedGoogle Scholar
  67. 67.
    Gargiulo P, Reynisson PJ, Helgason B et al (2011) Muscle, tendons, and bone: structural changes during denervation and FES treatment. Neurol Res 33:750–758. doi: 10.1179/1743132811Y.0000000007 CrossRefPubMedGoogle Scholar
  68. 68.
    Carraro U, Edmunds KJ, Gargiulo P (2015) 3D false color computed tomography for diagnosis and follow-up of permanent denervated human muscles submitted to home-based Functional Electrical Stimulation. Eur J Transl Myol Basic Appl Myol 25:129–140CrossRefGoogle Scholar
  69. 69.
    Eberstein A, Eberstein S (1996) Electrical stimulation of denervated muscle: is it worthwhile? Med Sci Sports Exerc 28:1463–1469CrossRefPubMedGoogle Scholar
  70. 70.
    Salmons S, Ashley Z, Sutherland H et al (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Organs 29:199–202CrossRefPubMedGoogle Scholar
  71. 71.
    Carraro U, Boncompagni S, Gobbo V et al (2015) Persistent muscle fiber regeneration in long term denervation. Past, present, future. Eur J Transl Myol Basic Appl Myol 25:77–92CrossRefGoogle Scholar
  72. 72.
    Brown MC, Holland RL (1979) A central role for denervated tissues in causing nerve sprouting. Nature 282(5740):724–726CrossRefPubMedGoogle Scholar
  73. 73.
    Nishimune H, Stanford JA, Mori Y (2014) Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 49:315–324. doi: 10.1002/mus.24095 CrossRefPubMedGoogle Scholar
  74. 74.
    Eberstein A, Pachter BR (1986) The effect of electrical stimulation on reinnervation of rat muscle: contractile properties and endplate morphometry. Brain Res 384:304–310CrossRefPubMedGoogle Scholar
  75. 75.
    Willand MP, Chiang CD, Zhang JJ et al (2015) Daily electrical muscle stimulation enhances functional recovery following nerve transection and repair in rats. Neurorehabil Neural Repair 29:690–700. doi: 10.1177/1545968314562117 CrossRefPubMedGoogle Scholar
  76. 76.
    Willand MP, Nguyen MA, Borschel GH et al (2015) Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair (Epub ahead of print) (Review)Google Scholar
  77. 77.
    Willand MP, Nguyen MA, Borschel GH, Gordon T (2016) Electrical stimulation to promote peripheral nerve regeneration. Neurorehabil Neural Repair 30(5):490–496. doi: 10.1177/1545968315604399 CrossRefPubMedGoogle Scholar
  78. 78.
    Chan KM, Curran M, Gordon T (2016) The use of brief post-surgical low frequency electrical stimulation to enhance nerve regeneration in clinical practice. J Physiol. doi: 10.1113/JP270892 Google Scholar
  79. 79.
    Wang R, Meinel FG, Schoepf UJ et al (2015) Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: comparison with cardiac magnetic resonance. Eur Radiol (Epub ahead of print)Google Scholar
  80. 80.
    Bersch I, Tesini S, Bersch U et al (2015) Functional electrical stimulation in spinal cord injury: clinical evidence versus daily practice. Artif Organs 39:849–854. doi: 10.1111/aor.12618 CrossRefPubMedGoogle Scholar
  81. 81.
    Donovan-Hall MK, Burridge J, Dibb B et al (2011) The views of people with spinal cord injury about the use of functional electrical stimulation. Artif Organs 35:204–211. doi: 10.1111/j.1525-1594.2011.01211.x CrossRefPubMedGoogle Scholar
  82. 82.
    Hughes AM, Burridge JH, Demain SH et al (2014) Translation of evidence-based assistive technologies into stroke rehabilitation: users’ perceptions of the barriers and opportunities. BMC Health Serv Res 14:124. doi: 10.1186/1472-6963-14-124 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Schils SJ, Turner TA (2014) Functional Electrical Stimulation for equine epaxial muscle spasms: retrospective study of 241 clinical cases. Comp Exerc Physiol 10:89–97CrossRefGoogle Scholar
  84. 84.
    Ravara B, Gobbo V, Carraro U et al (2015) Functional electrical stimulation as a safe and effective treatment for equine epaxial muscle spasms: clinical evaluations and histochemical morphometry of mitochondria in muscle biopsies. Eur J Transl Myol Basic Appl Myol 25:109–120CrossRefGoogle Scholar
  85. 85.
    Schils S, Carraro U, Turner T et al (2015) Functional electrical stimulation for equine muscle hypertonicity: histological changes in mitochondrial density and distribution. J Equine Vet Sci 35:907–916CrossRefGoogle Scholar
  86. 86.
    Mosole S, Zampieri S, Germinario E et al (2015) Structural and functional characteristics of denervated muscles from oldest-old rats: a relevant animal model for FES of denervated myofibers of the diaphragm in ALS? Eur J Transl Myol Basic Appl Myol 25:151Google Scholar
  87. 87.
    Mammucari C, Gherardi G, Zamparo I et al (2015) The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 2015(10):1269–1279. doi: 10.1016/j.celrep.01.056 CrossRefGoogle Scholar
  88. 88.
    Franzini-Armstrong C (2015) Electron microscopy: from 2D to 3D images with special reference to muscle. Eur J Transl Myol Basic Appl Myol 25(1):5–13CrossRefGoogle Scholar
  89. 89.
    Cheetham J, Perkins JD, Jarvis JC et al (2015) Effects of functional electrical stimulation on denervated laryngeal muscle in a large animal model. Artif Organs 39(10):876–885. doi: 10.1111/aor.12624 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ugo Carraro
    • 1
  • Helmut Kern
    • 2
    • 3
  • Paolo Gava
    • 4
  • Christian Hofer
    • 2
  • Stefan Loefler
    • 2
  • Paolo Gargiulo
    • 5
    • 6
  • Kyle Edmunds
    • 5
  • Íris Dröfn Árnadóttir
    • 5
  • Sandra Zampieri
    • 2
    • 4
  • Barbara Ravara
    • 2
    • 4
  • Francesco Gava
    • 2
    • 4
  • Alessandra Nori
    • 4
  • Valerio Gobbo
    • 7
  • Stefano Masiero
    • 8
  • Andrea Marcante
    • 1
  • Alfonc Baba
    • 1
  • Francesco Piccione
    • 1
  • Sheila Schils
    • 9
  • Amber Pond
    • 10
  • Simone Mosole
    • 2
    • 4
    Email author
  1. 1.IRCCS Fondazione Ospedale San CamilloVeniceItaly
  2. 2.Ludwig Boltzmann Institute of Electrical Stimulation and Physical RehabilitationViennaAustria
  3. 3.Institute of Physical Medicine and RehabilitationWilhelminenspitalViennaAustria
  4. 4.Laboratory of Translational Myology of the Interdepartmental Research Center of Myology, Department of Biomedical ScienceUniversity of PadovaPaduaItaly
  5. 5.Institute for Biomedical and Neural EngineeringReykjavíkIceland
  6. 6.LandspítaliReykjavíkIceland
  7. 7.Department of Biomedical Science, C.N.R. Institute of NeuroscienceUniversity of PadovaPaduaItaly
  8. 8.Rehabilitation Unit, Department of NeuroscienceUniversity of PadovaPaduaItaly
  9. 9.EquiNewRiver FallsUSA
  10. 10.Anatomy DepartmentSouthern Illinois University, School of MedicineCarbondaleUSA

Personalised recommendations