Advertisement

Aging Clinical and Experimental Research

, Volume 28, Issue 6, pp 1047–1060 | Cite as

The role of DXA in sarcopenia

  • Giuseppe GuglielmiEmail author
  • Federico Ponti
  • Margherita Agostini
  • Michele Amadori
  • Giuseppe Battista
  • Alberto Bazzocchi
Review

Abstract

Sarcopenia is a condition characterized by progressive and generalized reduction in skeletal muscle mass and muscle strength, associated with an increased risk of adverse outcomes (disability, hospitalization, death). The growing attention in the last years, aiming to establish a consensus definition and treatment, reflects the interest of the scientific community toward this complex condition, which has many implications in clinical practice and public health. Dual-energy X-ray absorptiometry (DXA) is the gold-standard technique in the analysis of body composition at molecular level, providing assessment and quantification of fat mass, lean mass and bone mineral content, both in a single body region of interest and at whole-body level. In particular, through the assessment of non-bone lean mass parameters, such as appendicular lean mass adjusted for BMI or height (ALM/BMI and ALM/ht2, respectively), it is possible to discriminate subjects with “physiological” loss of muscle mass from those with “pathological” impoverishment of this compartment, referring to specific cutoff values validated in the literature, but keeping in mind the lack of standardization of DXA measures. In addition, it is useful in treatment planning, estimating resting energy expenditure, and in follow-up, because it allows quantifying with high reproducibility the modifications in BC, distinguishing when the change is biological (deterioration due to a progression of the disease or improvement due to treatment). Due to DXA favorability in terms of accuracy, simplicity, availability, low cost and low radiation exposure, its role in sarcopenia diagnosis is becoming increasingly important, emerging as reference assessment technique in muscle mass evaluation.

Keywords

Sarcopenia Aging Absorptiometry Photon Muscle Body composition Diagnosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Rizzoli R, Reginster JY, Arnal JF et al (2013) Quality of life in sarcopenia and frailty. Calcif Tissue Int 93:101–120. doi: 10.1007/s00223-013-9758-y PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Taekema DG, Gussekloo J, Maier AB et al (2010) Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39:331–337. doi: 10.1093/ageing/afq022 PubMedCrossRefGoogle Scholar
  3. 3.
    Rantanen T, Avlund K, Suominen H et al (2002) Muscle strength as a predictor of onset of ADL dependence in people aged 75 years. Aging Clin Exp Res 14(3 Suppl):10–15PubMedGoogle Scholar
  4. 4.
    Cooper R, Kuh D, Hardy R et al (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467. doi: 10.1136/bmj.c4467 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Vetrano DL, Landi F, Volpato S et al (2014) Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol Ser A Biol Sci Med Sci 69:1154–1161. doi: 10.1093/gerona/glu034 CrossRefGoogle Scholar
  6. 6.
    Guralnik JM, Ferrucci L, Pieper CF et al (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol Ser A Biol Sci Med Sci 55:M221–M231CrossRefGoogle Scholar
  7. 7.
    Lauretani F, Russo CR, Bandinelli S et al (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95:1851–1860. doi: 10.1152/japplphysiol.00246.2003 PubMedCrossRefGoogle Scholar
  8. 8.
    Cawthon PM, Fox KM, Gandra SR et al (2009) Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc 57:1411–1419. doi: 10.1111/j.1532-5415.2009.02366.x PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beaudart C, Rizzoli R, Bruyere O et al (2014) Sarcopenia: burden and challenges for public health. Arch Public Health 72:45. doi: 10.1186/2049-3258-72-45 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Janssen I, Shepard DS, Katzmarzyk PT et al (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991SPubMedGoogle Scholar
  12. 12.
    Tzankoff SP, Norris AH (1977) Effect of muscle mass decrease on age-related BMR changes. J Appl Physiol Respir Environ Exerc Physiol 43:1001–1006PubMedGoogle Scholar
  13. 13.
    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedCrossRefGoogle Scholar
  14. 14.
    Delmonico MJ, Harris TB, Lee JS et al (2007) Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 55:769–774. doi: 10.1111/j.1532-5415.2007.01140.x PubMedCrossRefGoogle Scholar
  15. 15.
    Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol Ser A Biol Sci Med Sci 67:28–40. doi: 10.1093/gerona/glr010 CrossRefGoogle Scholar
  16. 16.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. J Am Med Dir Assoc 12:249–256. doi: 10.1016/j.jamda.2011.01.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing 39:412–423. doi: 10.1093/ageing/afq034 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol Ser A Biol Sci Med Sci 69:547–558. doi: 10.1093/gerona/glu010 CrossRefGoogle Scholar
  19. 19.
    Bazzocchi A, Diano D, Ponti F et al (2013) Health and ageing: a cross-sectional study of body composition. Clin Nutr 32:569–578. doi: 10.1016/j.clnu.2012.10.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Bazzocchi A, Ponti F, Diano D et al (2015) Trabecular bone score in healthy ageing. Br J Radiol 88:20140865. doi: 10.1259/bjr.20140865 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pietrobelli A, Wang Z, Formica C et al (1998) Dual-energy X-ray absorptiometry: fat estimation errors due to variation in soft tissue hydration. Am J Physiol 274:E808–E816PubMedGoogle Scholar
  22. 22.
    Laskey MA (1996) Dual-energy X-ray absorptiometry and body composition. Nutrition 12:45–51PubMedCrossRefGoogle Scholar
  23. 23.
    Toombs RJ, Ducher G, Shepherd JA et al (2012) The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity 20:30–39. doi: 10.1038/oby.2011.211 PubMedCrossRefGoogle Scholar
  24. 24.
    Bazzocchi A, Ponti F, Cariani S et al (2015) Visceral fat and body composition changes in a female population after RYGBP: a two-year follow-up by DXA. Obes Surg 25:443–451. doi: 10.1007/s11695-014-1422-8 PubMedCrossRefGoogle Scholar
  25. 25.
    Bazzocchi A, Diano D (2014) Dual-energy X-ray absorptiometry in obesity. CMAJ 186:48. doi: 10.1503/cmaj.120149 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Bazzocchi A, Diano D, Ponti F et al (2014) A 360-degree overview of body composition in healthy people: relationships among anthropometry, ultrasonography, and dual-energy X-ray absorptiometry. Nutrition 30:696–701. doi: 10.1016/j.nut.2013.11.013 PubMedCrossRefGoogle Scholar
  27. 27.
    Franzoni E, Ciccarese F, Di Pietro E et al (2014) Follow-up of bone mineral density and body composition in adolescents with restrictive anorexia nervosa: role of dual-energy X-ray absorptiometry. Eur J Clin Nutr 68:247–252. doi: 10.1038/ejcn.2013.254 PubMedCrossRefGoogle Scholar
  28. 28.
    Bazzocchi A, Ferrari F, Diano D et al (2012) Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 91:149–156. doi: 10.1007/s00223-012-9609-2 PubMedCrossRefGoogle Scholar
  29. 29.
    Libber J, Binkley N, Krueger D (2012) Clinical observations in total body DXA: technical aspects of positioning and analysis. J Clin Densitom 15:282–289. doi: 10.1016/j.jocd.2011.12.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE 4:e7038. doi: 10.1371/journal.pone.0007038 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Silva AM, Heymsfield SB, Sardinha LB (2013) Assessing body composition in taller or broader individuals using dual-energy X-ray absorptiometry: a systematic review. Eur J Clin Nutr 67:1012–1021. doi: 10.1038/ejcn.2013.148 PubMedCrossRefGoogle Scholar
  32. 32.
    Rothney MP, Brychta RJ, Schaefer EV et al (2009) Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity 17:1281–1286. doi: 10.1038/oby.2009.14 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Nana A, Slater GJ, Hopkins WG et al (2012) Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active people. Med Sci Sports Exerc 44:180–189. doi: 10.1249/MSS.0b013e318228b60e PubMedCrossRefGoogle Scholar
  34. 34.
    Nana A, Slater GJ, Hopkins WG et al (2013) Effects of exercise sessions on DXA measurements of body composition in active people. Med Sci Sports Exerc 45:178–185. doi: 10.1249/MSS.0b013e31826c9cfd PubMedCrossRefGoogle Scholar
  35. 35.
    Griffiths PL, Rousham EK, Norris SA et al (2008) Socio-economic status and body composition outcomes in urban South African children. Arch Dis Child 93:862–867. doi: 10.1136/adc.2006.112649 PubMedCrossRefGoogle Scholar
  36. 36.
    Rikkonen T, Sirola J, Salovaara K et al (2012) Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int 91:131–138. doi: 10.1007/s00223-012-9618-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Goulding A, Taylor RW, Grant AM et al (2009) Relationships of appendicular LMI and total body LMI to bone mass and physical activity levels in a birth cohort of New Zealand five-year olds. Bone 45:455–459. doi: 10.1016/j.bone.2009.05.007 PubMedCrossRefGoogle Scholar
  38. 38.
    Ho-Pham LT, Nguyen ND, Lai TQ et al (2010) Contributions of lean mass and fat mass to bone mineral density: a study in postmenopausal women. BMC Musculoskelet Disord 11:59. doi: 10.1186/1471-2474-11-59 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Douchi T, Yamamoto S, Oki T et al (1999) Serum androgen levels and muscle mass in women with polycystic ovary syndrome. Obstet Gynecol 94:337–340PubMedGoogle Scholar
  40. 40.
    Rutten EP, Spruit MA, Wouters EF (2010) Critical view on diagnosing muscle wasting by single-frequency bio-electrical impedance in COPD. Respir Med 104:91–98. doi: 10.1016/j.rmed.2009.07.004 PubMedCrossRefGoogle Scholar
  41. 41.
    Han SS, Heo NJ, Na KY et al (2010) Age- and gender-dependent correlations between body composition and chronic kidney disease. Am J Nephrol 31:83–89. doi: 10.1159/000258660 PubMedCrossRefGoogle Scholar
  42. 42.
    Kim TN, Yang SJ, Yoo HJ et al (2009) Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study. Int J Obes 33:885–892. doi: 10.1038/ijo.2009.130 CrossRefGoogle Scholar
  43. 43.
    Petak S, Barbu CG, Yu EW et al (2013) The Official Positions of the International Society for Clinical Densitometry: body composition analysis reporting. J Clin Densitom 16:508–519. doi: 10.1016/j.jocd.2013.08.018 PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsiopoulos N, Baumgartner RN, Heymsfield SB et al (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122PubMedGoogle Scholar
  45. 45.
    Levine JA, Abboud L, Barry M et al (2000) Measuring leg muscle and fat mass in humans: comparison of CT and dual-energy X-ray absorptiometry. J Appl Physiol 88:452–456PubMedGoogle Scholar
  46. 46.
    Visser M, Kritchevsky SB, Goodpaster BH et al (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50:897–904PubMedCrossRefGoogle Scholar
  47. 47.
    Goodpaster BH, Carlson CL, Visser M et al (2001) Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol 90:2157–2165PubMedGoogle Scholar
  48. 48.
    Marcus RL, Addison O, Dibble LE et al (2012) Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res 2012:629637. doi: 10.1155/2012/629637 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585. doi: 10.3945/ajcn.2009.28047 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Prado CM, Heymsfield SB (2014) Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr 38:940–953. doi: 10.1177/0148607114550189 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen Z, Wang Z, Lohman T et al (2007) Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr 137:2775–2780PubMedGoogle Scholar
  52. 52.
    Wang J, Pierson RN Jr (1976) Disparate hydration of adipose and lean tissue require a new model for body water distribution in man. J Nutr 106:1687–1693PubMedGoogle Scholar
  53. 53.
    Visser M, Fuerst T, Lang T et al (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. J Appl Physiol 87:1513–1520PubMedGoogle Scholar
  54. 54.
    Shih R, Wang Z, Heo M et al (2000) Lower limb skeletal muscle mass: development of dual-energy X-ray absorptiometry prediction model. J Appl Physiol 89:1380–1386PubMedGoogle Scholar
  55. 55.
    Heckmatt JZ, Leeman S, Dubowitz V (1982) Ultrasound imaging in the diagnosis of muscle disease. J Pediatri 101:656–660CrossRefGoogle Scholar
  56. 56.
    Watanabe Y, Yamada Y, Fukumoto Y et al (2013) Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging 8:993–998. doi: 10.2147/CIA.S47263 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pillen S, van Dijk JP, Weijers G et al (2009) Quantitative gray-scale analysis in skeletal muscle ultrasound: a comparison study of two ultrasound devices. Muscle Nerve 39:781–786. doi: 10.1002/mus.21285 PubMedCrossRefGoogle Scholar
  58. 58.
    Janssen I, Heymsfield SB, Baumgartner RN et al (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 89:465–471PubMedGoogle Scholar
  59. 59.
    Rubbieri G, Mossello E, Di Bari M (2014) Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab 11:181–184PubMedPubMedCentralGoogle Scholar
  60. 60.
    Trippo U, Koebnick C, Zunft HJ et al (2004) Bioelectrical impedance analysis for predicting body composition: what about the external validity of new regression equations? Am J Clin Nutr 79:335–336; author reply 336–337Google Scholar
  61. 61.
    Sun SS, Chumlea WC, Heymsfield SB et al (2003) Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr 77:331–340PubMedGoogle Scholar
  62. 62.
    Kyle UG, Genton L, Karsegard L et al (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition 17:248–253PubMedCrossRefGoogle Scholar
  63. 63.
    Landi F, Russo A, Liperoti R et al (2010) Midarm muscle circumference, physical performance and mortality: results from the aging and longevity study in the Sirente geographic area (ilSIRENTE study). Clin Nutr 29:441–447. doi: 10.1016/j.clnu.2009.12.006 PubMedCrossRefGoogle Scholar
  64. 64.
    Miller MD, Crotty M, Giles LC et al (2002) Corrected arm muscle area: an independent predictor of long-term mortality in community-dwelling older adults? J Am Geriatr Soc 50:1272–1277PubMedCrossRefGoogle Scholar
  65. 65.
    Rolland Y, Lauwers-Cances V, Cournot M et al (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51:1120–1124PubMedCrossRefGoogle Scholar
  66. 66.
    Boudousq V, Goulart DM, Dinten JM et al (2005) Image resolution and magnification using a cone beam densitometer: optimizing data acquisition for hip morphometric analysis. Osteoporos Int 16:813–822. doi: 10.1007/s00198-004-1751-x PubMedCrossRefGoogle Scholar
  67. 67.
    Hawkinson J, Timins J, Angelo D et al (2007) Technical white paper: bone densitometry. J Am Coll Radiol 4:320–327. doi: 10.1016/j.jacr.2007.01.021 PubMedCrossRefGoogle Scholar
  68. 68.
    The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103 (2007). Ann ICRP 37:1–332. doi: 10.1016/j.icrp.2007.10.003
  69. 69.
    Kendler DL, Borges JL, Fielding RA et al (2013) The official positions of the International Society for Clinical Densitometry: indications of use and reporting of DXA for body composition. J Clin Densitom 16:496–507. doi: 10.1016/j.jocd.2013.08.020 PubMedCrossRefGoogle Scholar
  70. 70.
    McCollough CH, Schueler BA, Atwell TD et al (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27:909–917; discussion 917–908. doi: 10.1148/rg.274065149
  71. 71.
    Sala A, Webber C, Halton J et al (2006) Effect of diagnostic radioisotopes and radiographic contrast media on measurements of lumbar spine bone mineral density and body composition by dual-energy X-ray absorptiometry. J Clin Densitom 9:91–96. doi: 10.1016/j.jocd.2005.10.003 PubMedCrossRefGoogle Scholar
  72. 72.
    Xie LJ, Li JF, Zeng FW et al (2013) Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays? J Clin Densitom 16:275–278. doi: 10.1016/j.jocd.2013.02.006 PubMedCrossRefGoogle Scholar
  73. 73.
    Favre B, Ojha M (1991) Purification and properties of a casein kinase II-like enzyme from Neurospora crassa. FEMS Microbiol Lett 62:21–24PubMedCrossRefGoogle Scholar
  74. 74.
    Kelly TL, Berger N, Richardson TL (1998) DXA body composition: theory and practice. Appl Radiat Isot 49:511–513PubMedCrossRefGoogle Scholar
  75. 75.
    Madden AM, Morgan MY (1997) The potential role of dual-energy X-ray absorptiometry in the assessment of body composition in cirrhotic patients. Nutrition 13:40–45PubMedCrossRefGoogle Scholar
  76. 76.
    LaForgia J, Dollman J, Dale MJ et al (2009) Validation of DXA body composition estimates in obese men and women. Obesity 17:821–826. doi: 10.1038/oby.2008.595 PubMedCrossRefGoogle Scholar
  77. 77.
    Wang Z, Deurenberg P, Wang W et al (1999) Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr 69:833–841PubMedGoogle Scholar
  78. 78.
    Plank LD (2005) Dual-energy X-ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care 8:305–309PubMedCrossRefGoogle Scholar
  79. 79.
    Andreoli A, Scalzo G, Masala S et al (2009) Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med (Torino) 114:286–300. doi: 10.1007/s11547-009-0369-7 CrossRefGoogle Scholar
  80. 80.
    Genton L, Hans D, Kyle UG et al (2002) Dual-energy X-ray absorptiometry and body composition: differences between devices and comparison with reference methods. Nutrition 18:66–70PubMedCrossRefGoogle Scholar
  81. 81.
    Dube J, Goodpaster BH (2006) Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 9:553–559. doi: 10.1097/01.mco.0000241664.38385.12 PubMedCrossRefGoogle Scholar
  82. 82.
    Kraegen EW, Cooney GJ (2008) Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol 19:235–241. doi: 10.1097/01.mol.0000319118.44995.9a PubMedCrossRefGoogle Scholar
  83. 83.
    Sipila S, Suominen H (1994) Knee extension strength and walking speed in relation to quadriceps muscle composition and training in elderly women. Clin Physiol 14:433–442PubMedCrossRefGoogle Scholar
  84. 84.
    Corcoran MP, Lamon-Fava S, Fielding RA (2007) Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am J Clin Nutr 85:662–677PubMedGoogle Scholar
  85. 85.
    Khan AA, Colquhoun A, Hanley DA et al (2007) Standards and guidelines for technologists performing central dual-energy X-ray absorptiometry. J Clin Densitom 10:189–195. doi: 10.1016/j.jocd.2007.01.005 PubMedCrossRefGoogle Scholar
  86. 86.
    Pagotto V, Silveira EA (2014) Methods, diagnostic criteria, cutoff points, and prevalence of sarcopenia among older people. TheScientificWorldJournal 2014:231312. doi: 10.1155/2014/231312 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Genant HK, Grampp S, Gluer CC et al (1994) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514. doi: 10.1002/jbmr.5650091002 PubMedCrossRefGoogle Scholar
  88. 88.
    Lu Y, Fuerst T, Hui S et al (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 12:438–444. doi: 10.1007/s001980170087 PubMedCrossRefGoogle Scholar
  89. 89.
    Shepherd JA, Cheng XG, Lu Y et al (2002) Universal standardization of forearm bone densitometry. J Bone Miner Res 17:734–745. doi: 10.1359/jbmr.2002.17.4.734 PubMedCrossRefGoogle Scholar
  90. 90.
    Shepherd JA, Fan B, Lu Y et al (2012) A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. J Bone Miner Res 27:2208–2216. doi: 10.1002/jbmr.1654 PubMedCrossRefGoogle Scholar
  91. 91.
    Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43:748–759. doi: 10.1093/ageing/afu115 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Baim S, Wilson CR, Lewiecki EM et al (2005) Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom 8:371–378PubMedCrossRefGoogle Scholar
  93. 93.
    Nelson L, Gulenchyn KY, Atthey M et al (2010) Is a fixed value for the least significant change appropriate? J Clin Densitom 13:18–23. doi: 10.1016/j.jocd.2009.10.001 PubMedCrossRefGoogle Scholar
  94. 94.
    Hangartner TN, Warner S, Braillon P et al (2013) The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 16:520–536. doi: 10.1016/j.jocd.2013.08.007 PubMedCrossRefGoogle Scholar
  95. 95.
    Buehring B, Krueger D, Libber J et al (2014) Dual-energy X-ray absorptiometry measured regional body composition least significant change: effect of region of interest and gender in athletes. J Clin Densitom 17:121–128. doi: 10.1016/j.jocd.2013.02.012 PubMedCrossRefGoogle Scholar
  96. 96.
    Knapp KM, Welsman JR, Hopkins SJ et al (2015) Obesity increases precision errors in total body dual-energy X-ray absorptiometry measurements. J Clin Densitom 18:209–216. doi: 10.1016/j.jocd.2014.06.001 PubMedCrossRefGoogle Scholar
  97. 97.
    Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962. doi: 10.1359/jbmr.1999.14.11.1952 PubMedCrossRefGoogle Scholar
  98. 98.
    Ravussin E, Lillioja S, Anderson TE et al (1986) Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Investig 78:1568–1578. doi: 10.1172/JCI112749 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Piers LS, Soares MJ, McCormack LM et al (1998) Is there evidence for an age-related reduction in metabolic rate? J Appl Physiol 85:2196–2204PubMedGoogle Scholar
  100. 100.
    Roubenoff R, Hughes VA, Dallal GE et al (2000) The effect of gender and body composition method on the apparent decline in lean mass-adjusted resting metabolic rate with age. J Gerontol Ser A Biol Sci Med Sci 55:M757–M760CrossRefGoogle Scholar
  101. 101.
    van Pelt RE, Dinneno FA, Seals DR et al (2001) Age-related decline in RMR in physically active men: relation to exercise volume and energy intake. Am J Physiol Endocrinol Metabol 281:E633–E639Google Scholar
  102. 102.
    Hayes M, Chustek M, Wang Z et al (2002) DXA: potential for creating a metabolic map of organ-tissue resting energy expenditure components. Obes Res 10:969–977. doi: 10.1038/oby.2002.132 PubMedCrossRefGoogle Scholar
  103. 103.
    Usui C, Taguchi M, Ishikawa-Takata K et al (2012) The validity of body composition measurement using dual energy X-ray absorptiometry for estimating resting energy expenditure. In: El Maghraoui A (ed) Dual energy X-ray absorptiometry. ISBN: 978-953-307-877-9Google Scholar
  104. 104.
    Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB, Health ABC Study Investigators (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51:1602–1609PubMedCrossRefGoogle Scholar
  105. 105.
    Yuki A, Ando F, Shimokata H (2014) Transdisciplinary approach for sarcopenia. sarcopenia: definition and the criteria for Asian elderly people. Clin Calcium 24(10):1441–1448PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giuseppe Guglielmi
    • 1
    • 2
    Email author
  • Federico Ponti
    • 3
    • 4
  • Margherita Agostini
    • 3
  • Michele Amadori
    • 3
  • Giuseppe Battista
    • 3
  • Alberto Bazzocchi
    • 4
  1. 1.Department of RadiologyUniversity of FoggiaFoggiaItaly
  2. 2.Department of RadiologyScientific Institute “Casa Sollievo della Sofferenza” HospitalSan Giovanni RotondoItaly
  3. 3.Department of Specialized, Diagnostic, and Experimental Medicine, Sant’Orsola - Malpighi HospitalUniversity of BolognaBolognaItaly
  4. 4.Diagnostic and Interventional RadiologyThe “Rizzoli” Orthopaedic InstituteBolognaItaly

Personalised recommendations