Aging Clinical and Experimental Research

, Volume 28, Issue 4, pp 625–632

The role of protein oxidation and DNA damage in elderly hypertension

  • Serap Yavuzer
  • Hakan Yavuzer
  • Mahir Cengiz
  • Hayriye Erman
  • Filiz Demirdag
  • Alper Doventas
  • Huriye Balci
  • Deniz Suna Erdincler
  • Hafize Uzun
Original Article

DOI: 10.1007/s40520-015-0464-7

Cite this article as:
Yavuzer, S., Yavuzer, H., Cengiz, M. et al. Aging Clin Exp Res (2016) 28: 625. doi:10.1007/s40520-015-0464-7

Abstract

Introduction

This study aimed to evaluate the role of protein oxidation and DNA damage in the elderly hypertensive (HT) patients.

Materials and methods

This study consisted of four groups: two elderly groups with 30 HT patients and 30 normotensive healthy volunteers, and two young groups with 30 HT patients and 30 normotensive healthy volunteers. Plasma total thiol (T-SH), advanced oxidation protein products (AOPPs), protein carbonyl (PCO), ischemia modified albumin (IMA), urine 8-hydroxy-2′-deoxyguanosine (8-OHdG), and prooxidant–antioxidant balance (PAB) levels were measured.

Results

In the elderly HT group AOPPs, PCO, 8-OHdG, and PAB were significantly higher than the elderly control group. In the young HT group T-SH levels were significantly lower and the other oxidative stress parameters were significantly higher than the young control group. In the elderly control group AOPPs, PCO, IMA, 8-OHdG and PAB were significantly higher than the young control group. T-SH was significantly lower in the elderly control than the young control group. In the elderly HT group, T-SH levels were significantly lower and AOPPs, PCO, IMA, 8-OHdG, and PAB levels were significantly higher than the young HT group.

Conclusion

Protein and DNA cell damage occurs by oxidation of free radicals throughout life. Our study supports the view that these radicals may be responsible for the development of hypertension with aging process. Urine 8-OHdG levels can be used as a marker for oxidative DNA damage in the elderly hypertensive patients. Finally, our results suggest that oxidative stress may influence both the development and progression of hypertension and aging.

Keywords

Aging Hypertension Oxidative stress Protein oxidation DNA damage 

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Serap Yavuzer
    • 1
  • Hakan Yavuzer
    • 2
  • Mahir Cengiz
    • 1
  • Hayriye Erman
    • 3
  • Filiz Demirdag
    • 2
  • Alper Doventas
    • 2
  • Huriye Balci
    • 4
  • Deniz Suna Erdincler
    • 2
  • Hafize Uzun
    • 3
  1. 1.Department of Internal Medicine, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  3. 3.Department of Biochemistry, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey
  4. 4.Central Research Laboratory, Cerrahpasa Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations