Aging Clinical and Experimental Research

, Volume 27, Issue 4, pp 547–553 | Cite as

Aging-related changes in oxidative stress response of human endothelial cells

  • Valeria Conti
  • Graziamaria Corbi
  • Vittorio Simeon
  • Giusy Russomanno
  • Valentina Manzo
  • Nicola Ferrara
  • Amelia Filippelli
Original Article



Oxidative stress is strongly associated with aging and age-related diseases and plays a crucial role in endothelial dysfunction development.


To better understand the molecular mechanisms of aging and stress response in humans, we examined changes to young and older human endothelial cells over time (72, 96 and 120 h), before and after H2O2-induced stress.


We measured the expression of the deacetylase Sirtuin 1 (Sirt1) and its transcriptional target Forkhead box O3a (Foxo3a); TBARS, a well-known marker of overall oxidative stress, and catalase activity as index of antioxidation. Moreover, we quantified levels of cellular senescence by senescence-associated β galactosidase (SA-βgal) assay.


Under oxidative stress induction older cells showed a progressive decrease of Sirt1 and Foxo3a expression, persistently high TBARS levels with high, but ineffective Cat activity to counteract such levels. In addition cellular senescence drastically increased in older cells compared with Young cells both in presence and in the absence of oxidative stress.


By following the cell behavior during the time course, we can hypothesize that while in young cells an oxidative stress induction stimulated an adequate response through activation of molecular factor crucial to counteract oxidative stress, the older cells are not able to adequately adapt themselves to external stress stimuli.


During their life, endothelial cells impair the ability to defend themselves from oxidative stress stimuli. This dysfunction involves the pathway of Sirt1 a critical regulator of oxidative stress response and cellular lifespan, underlining its crucial role in endothelial homeostasis control during aging and age-associated diseases.


Senescence Oxidative stress Sirt1 Cat Lipid peroxidation Endothelial cells 


Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights

The article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Landmesser U, Spiekermann S, Dikalov S et al (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078PubMedCrossRefGoogle Scholar
  2. 2.
    Esper RJ, Nordaby RA, Vilariño JO et al (2006) Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol 5:4PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Donato AJ, Eskurza I, Silver AE et al (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and up regulation of nuclear factor-kappaB. Circ Res 100:1659–1666PubMedCrossRefGoogle Scholar
  4. 4.
    Corbi G, Bianco A, Turchiarelli V et al (2013) Potential mechanisms linking atherosclerosis and increased cardiovascular risk in COPD: focus on Sirtuins. Int J Mol Sci 14(6):12696–12713. doi:10.3390/ijms140612696 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113PubMedCrossRefGoogle Scholar
  6. 6.
    Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330:1431–1438PubMedCrossRefGoogle Scholar
  7. 7.
    Huang J, Gan Q, Han L et al (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3(3):e1710PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ota H, Eto M, Kano MR et al (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 8(9):1577–1579Google Scholar
  9. 9.
    Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the Sirt1 deacetylase. Science 303:2011–2015PubMedCrossRefGoogle Scholar
  10. 10.
    Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487PubMedCrossRefGoogle Scholar
  11. 11.
    Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280:16456–16460PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrara N, Rinaldi B, Corbi G et al (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150PubMedCrossRefGoogle Scholar
  13. 13.
    Kao CL, Chen LK, Chang YL et al (2010) Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17(9):970–979PubMedCrossRefGoogle Scholar
  14. 14.
    Ota H, Eto M, Kano MR et al (2010) Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 30(11):2205–2211. doi:10.1161/ATVBAHA.110.210500 PubMedCrossRefGoogle Scholar
  15. 15.
    Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Conti V, Corbi G, Russomanno G et al (2012) Oxidative stress effects on endothelial cells treated with different athletes’ sera. Med Sci Sports Exerc 44(1):39–49. doi:10.1249/MSS.0b013e318227f69c PubMedCrossRefGoogle Scholar
  17. 17.
    Conti V, Russomanno G, Corbi G et al (2013) Aerobic training workload affects human endothelial cells redox homeostasis. Med Sci Sports Exerc 45(4):644–653. doi:10.1249/MSS.0b013e318279fb59 PubMedCrossRefGoogle Scholar
  18. 18.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310PubMedCrossRefGoogle Scholar
  19. 19.
    Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611CrossRefGoogle Scholar
  20. 20.
    Razali N, Wah YB (2011) Power comparisons of Shapiro-Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal 2(1):21–33Google Scholar
  21. 21.
    Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Corbi G, Conti V, Russomanno G et al (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4:324. doi:10.3389/fphys.2013.00324 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Czypiorski P, Rabanter LL, Altschmied J et al (2013) Redox balance in the aged endothelium. Z Gerontol Geriatr 46:635–638PubMedCrossRefGoogle Scholar
  24. 24.
    Corbi G, Conti V, Scapagnini G et al (2012) Role of sirtuins, calorie restriction and physical activity in aging. Front Biosci (Elite Ed) 4:768–778CrossRefGoogle Scholar
  25. 25.
    Conti V, Corbi G, Russomanno G et al (2012) Cell redox homeostasis: reading Conti et al. data from a blood-centric perspective: response. Med Sci Sports Exerc 44(1):191CrossRefGoogle Scholar
  26. 26.
    Corbi G, Conti V, Russomanno G et al (2012) Is physical activity able to modify oxidative damage in cardiovascular aging? Oxid Med Cell Longev 2012:728547. doi:10.1155/2012/728547 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Heinzelmann S, Bauer G (2010) Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells. Biol Chem 391(6):675–693PubMedCrossRefGoogle Scholar
  28. 28.
    Urao N, Sudhahar V, Kim SJ et al (2013) Critical role of endothelial hydrogen peroxide in post-ischemic neovascularization. PLoS One 8(3):e57618PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sancho P, Troyano A, Fernández C et al (2003) Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationships with heat-shock protein expression. Mol Pharmacol 63(3):581–589PubMedCrossRefGoogle Scholar
  30. 30.
    Hsu CP, Odewale I, Alcendor RR et al (2008) Sirt1 protects the heart from aging and stress. Biol Chem 389:221–231PubMedCrossRefGoogle Scholar
  31. 31.
    Hwang JW, Yao H, Caito S et al (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61C:95–110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valeria Conti
    • 1
  • Graziamaria Corbi
    • 2
  • Vittorio Simeon
    • 3
  • Giusy Russomanno
    • 1
  • Valentina Manzo
    • 1
  • Nicola Ferrara
    • 4
    • 5
  • Amelia Filippelli
    • 1
  1. 1.Department of Medicine and SurgeryUniversity of SalernoSalernoItaly
  2. 2.Department of Medicine and Health SciencesUniversity of MoliseCampobassoItaly
  3. 3.Laboratory of Pre-clinical and Translational Research, Reference Cancer Center of BasilicataScientific Institute of Hospitalization and TreatmentRionero in VultureItaly
  4. 4.Department of Medical Translational SciencesFederico II University of NaplesNaplesItaly
  5. 5.Salvatore Maugeri FoundationIRCCS, Scientific Institute of Telese TermeBeneventoItaly

Personalised recommendations