Advertisement

Ghrelin forms in the modulation of energy balance and metabolism

  • Gianluca Gortan CappellariEmail author
  • Rocco BarazzoniEmail author
Review Article
Part of the following topical collections:
  1. Italian Society of Obesity (SIO) Reviews

Abstract

Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.

Level of evidence Level V, narrative review.

Keywords

Acylated ghrelin Unacylated ghrelin Mitochondria Insulin resistance Inflammation 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

As this review does not provide original results, formal consent is not required.

References

  1. 1.
    Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444(7121):854–859.  https://doi.org/10.1038/nature05484 CrossRefPubMedGoogle Scholar
  2. 2.
    Badman MK, Flier JS (2005) The gut and energy balance: visceral allies in the obesity wars. Science 307(5717):1909–1914.  https://doi.org/10.1126/science.1109951 CrossRefPubMedGoogle Scholar
  3. 3.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660.  https://doi.org/10.1038/45230 CrossRefGoogle Scholar
  4. 4.
    Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (2004) Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 18(3):439–456.  https://doi.org/10.1096/fj.03-0641rev CrossRefPubMedGoogle Scholar
  5. 5.
    Bowers CY, Momany F, Reynolds GA, Chang D, Hong A, Chang K (1980) Structure–activity relationships of a synthetic pentapeptide that specifically releases growth hormone in vitro. Endocrinology 106(3):663–667.  https://doi.org/10.1210/endo-106-3-663 CrossRefPubMedGoogle Scholar
  6. 6.
    Bowers CY, Momany FA, Reynolds GA, Hong A (1984) On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology 114(5):1537–1545.  https://doi.org/10.1210/endo-114-5-1537 CrossRefPubMedGoogle Scholar
  7. 7.
    Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273(5277):974–977CrossRefPubMedGoogle Scholar
  8. 8.
    Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85(2):495–522.  https://doi.org/10.1152/physrev.00012.2004 CrossRefPubMedGoogle Scholar
  9. 9.
    Tomasetto C, Karam SM, Ribieras S, Masson R, Lefebvre O, Staub A, Alexander G, Chenard MP, Rio MC (2000) Identification and characterization of a novel gastric peptide hormone: the motilin-related peptide. Gastroenterology 119(2):395–405CrossRefPubMedGoogle Scholar
  10. 10.
    Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab 86(10):4753–4758.  https://doi.org/10.1210/jcem.86.10.7885 CrossRefPubMedGoogle Scholar
  11. 11.
    Sakata I, Nakamura K, Yamazaki M, Matsubara M, Hayashi Y, Kangawa K, Sakai T (2002) Ghrelin-producing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract. Peptides 23(3):531–536CrossRefPubMedGoogle Scholar
  12. 12.
    Knerr I, Herzog D, Rauh M, Rascher W, Horbach T (2006) Leptin and ghrelin expression in adipose tissues and serum levels in gastric banding patients. Eur J Clin Investig 36(6):389–394.  https://doi.org/10.1111/j.1365-2362.2006.01642.x CrossRefGoogle Scholar
  13. 13.
    Korbonits M, Bustin SA, Kojima M, Jordan S, Adams EF, Lowe DG, Kangawa K, Grossman AB (2001) The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors. J Clin Endocrinol Metab 86(2):881–887.  https://doi.org/10.1210/jcem.86.2.7190 CrossRefPubMedGoogle Scholar
  14. 14.
    Volante M, Allia E, Gugliotta P, Funaro A, Broglio F, Deghenghi R, Muccioli G, Ghigo E, Papotti M (2002) Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 87(3):1300–1308.  https://doi.org/10.1210/jcem.87.3.8279 CrossRefPubMedGoogle Scholar
  15. 15.
    Wierup N, Svensson H, Mulder H, Sundler F (2002) The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept 107(1–3):63–69CrossRefPubMedGoogle Scholar
  16. 16.
    Mori K, Yoshimoto A, Takaya K, Hosoda K, Ariyasu H, Yahata K, Mukoyama M, Sugawara A, Hosoda H, Kojima M, Kangawa K, Nakao K (2000) Kidney produces a novel acylated peptide, ghrelin. FEBS Lett 486(3):213–216CrossRefPubMedGoogle Scholar
  17. 17.
    Tena-Sempere M, Barreiro ML, Gonzalez LC, Gaytan F, Zhang FP, Caminos JE, Pinilla L, Casanueva FF, Dieguez C, Aguilar E (2002) Novel expression and functional role of ghrelin in rat testis. Endocrinology 143(2):717–725.  https://doi.org/10.1210/endo.143.2.8646 CrossRefPubMedGoogle Scholar
  18. 18.
    Gualillo O, Caminos J, Blanco M, Garcia-Caballero T, Kojima M, Kangawa K, Dieguez C, Casanueva F (2001) Ghrelin, a novel placental-derived hormone. Endocrinology 142(2):788–794.  https://doi.org/10.1210/endo.142.2.7987 CrossRefPubMedGoogle Scholar
  19. 19.
    Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11):4255–4261.  https://doi.org/10.1210/endo.141.11.7757 CrossRefPubMedGoogle Scholar
  20. 20.
    Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123(4):1120–1128CrossRefPubMedGoogle Scholar
  21. 21.
    Wajnrajch MP, Ten I, Gertner JM, Leibel RL (2000) Genomic organization of the human GHRELIN gene. Int J Disabil Hum Dev 1(4):231–234CrossRefGoogle Scholar
  22. 22.
    Seim I, Collet C, Herington AC, Chopin LK (2007) Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts. BMC Genom 8:298.  https://doi.org/10.1186/1471-2164-8-298 CrossRefGoogle Scholar
  23. 23.
    Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K, Kojima M (2012) Structure, regulation and function of ghrelin. J Biochem 151(2):119–128.  https://doi.org/10.1093/jb/mvr134 CrossRefPubMedGoogle Scholar
  24. 24.
    Liu B, Garcia EA, Korbonits M (2011) Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes. Peptides 32(11):2191–2207.  https://doi.org/10.1016/j.peptides.2011.09.006 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJ (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310(5750):996–999.  https://doi.org/10.1126/science.1117255 CrossRefPubMedGoogle Scholar
  26. 26.
    Depoortere I (2012) GI functions of GPR39: novel biology. Curr Opin Pharmacol 12(6):647–652.  https://doi.org/10.1016/j.coph.2012.07.019 CrossRefGoogle Scholar
  27. 27.
    Gargantini E, Grande C, Trovato L, Ghigo E, Granata R (2013) The role of obestatin in glucose and lipid metabolism. Horm Metab Res 45(13):1002–1008.  https://doi.org/10.1055/s-0033-1351325 CrossRefPubMedGoogle Scholar
  28. 28.
    Baragli A, Lanfranco F, Allasia S, Granata R, Ghigo E (2011) Neuroendocrine and metabolic activities of ghrelin gene products. Peptides 32(11):2323–2332.  https://doi.org/10.1016/j.peptides.2011.10.024 CrossRefPubMedGoogle Scholar
  29. 29.
    Gesmundo I, Gallo D, Favaro E, Ghigo E, Granata R (2013) Obestatin: a new metabolic player in the pancreas and white adipose tissue. IUBMB Life 65(12):976–982.  https://doi.org/10.1002/iub.1226 CrossRefPubMedGoogle Scholar
  30. 30.
    Granata R, Gallo D, Luque RM, Baragli A, Scarlatti F, Grande C, Gesmundo I, Cordoba-Chacon J, Bergandi L, Settanni F, Togliatto G, Volante M, Garetto S, Annunziata M, Chanclon B, Gargantini E, Rocchietto S, Matera L, Datta G, Morino M, Brizzi MF, Ong H, Camussi G, Castano JP, Papotti M, Ghigo E (2012) Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. FASEB J 26(8):3393–3411.  https://doi.org/10.1096/fj.11-201343 CrossRefPubMedGoogle Scholar
  31. 31.
    Miraglia del Giudice E, Santoro N, Cirillo G, Raimondo P, Grandone A, D’Aniello A, Di Nardo M, Perrone L (2004) Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity. Int J Obes Relat Metab Disord 28(3):447–450.  https://doi.org/10.1038/sj.ijo.0802572 CrossRefGoogle Scholar
  32. 32.
    Poykko S, Ukkola O, Kauma H, Savolainen MJ, Kesaniemi YA (2003) Ghrelin Arg51Gln mutation is a risk factor for Type 2 diabetes and hypertension in a random sample of middle-aged subjects. Diabetologia 46(4):455–458.  https://doi.org/10.1007/s00125-003-1058-z CrossRefPubMedGoogle Scholar
  33. 33.
    Ukkola O, Ravussin E, Jacobson P, Snyder EE, Chagnon M, Sjostrom L, Bouchard C (2001) Mutations in the preproghrelin/ghrelin gene associated with obesity in humans. J Clin Endocrinol Metab 86(8):3996–3999.  https://doi.org/10.1210/jcem.86.8.7914 CrossRefPubMedGoogle Scholar
  34. 34.
    Ukkola O, Ravussin E, Jacobson P, Perusse L, Rankinen T, Tschop M, Heiman ML, Leon AS, Rao DC, Skinner JS, Wilmore JH, Sjostrom L, Bouchard C (2002) Role of ghrelin polymorphisms in obesity based on three different studies. Obes Res 10(8):782–791.  https://doi.org/10.1038/oby.2002.106 CrossRefPubMedGoogle Scholar
  35. 35.
    Hosoda H, Kojima M, Matsuo H, Kangawa K (2000) Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochem Biophys Res Commun 279(3):909–913.  https://doi.org/10.1006/bbrc.2000.4039 CrossRefPubMedGoogle Scholar
  36. 36.
    Sakata I, Yang J, Lee CE, Osborne-Lawrence S, Rovinsky SA, Elmquist JK, Zigman JM (2009) Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. Am J Physiol Endocrinol Metab 297(1):E134–E141.  https://doi.org/10.1152/ajpendo.90859.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang J, Zhao TJ, Goldstein JL, Brown MS (2008) Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides. Proc Natl Acad Sci USA 105(31):10750–10755.  https://doi.org/10.1073/pnas.0805353105 CrossRefPubMedGoogle Scholar
  38. 38.
    Lim CT, Kola B, Grossman A, Korbonits M (2011) The expression of ghrelin O-acyltransferase (GOAT) in human tissues. Endocr J 58(8):707–710CrossRefPubMedGoogle Scholar
  39. 39.
    Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE (2008) Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 105(17):6320–6325.  https://doi.org/10.1073/pnas.0800708105 CrossRefPubMedGoogle Scholar
  40. 40.
    Hosoda H, Kojima M, Mizushima T, Shimizu S, Kangawa K (2003) Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem 278(1):64–70.  https://doi.org/10.1074/jbc.M205366200 CrossRefPubMedGoogle Scholar
  41. 41.
    Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132(3):387–396.  https://doi.org/10.1016/j.cell.2008.01.017 CrossRefPubMedGoogle Scholar
  42. 42.
    Dehlin E, Liu J, Yun SH, Fox E, Snyder S, Gineste C, Willingham L, Geysen M, Gaylinn BD, Sando JJ (2008) Regulation of ghrelin structure and membrane binding by phosphorylation. Peptides 29(6):904–911.  https://doi.org/10.1016/j.peptides.2008.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mundinger TO, Cummings DE, Taborsky GJ Jr (2006) Direct stimulation of ghrelin secretion by sympathetic nerves. Endocrinology 147(6):2893–2901.  https://doi.org/10.1210/en.2005-1182 CrossRefPubMedGoogle Scholar
  44. 44.
    Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nohr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2(4):376–392.  https://doi.org/10.1016/j.molmet.2013.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tong J, Dave N, Mugundu GM, Davis HW, Gaylinn BD, Thorner MO, Tschop MH, D’Alessio D, Desai PB (2013) The pharmacokinetics of acyl, des-acyl, and total ghrelin in healthy human subjects. Eur J Endocrinol 168(6):821–828.  https://doi.org/10.1530/EJE-13-0072 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu J, Prudom CE, Nass R, Pezzoli SS, Oliveri MC, Johnson ML, Veldhuis P, Gordon DA, Howard AD, Witcher DR, Geysen HM, Gaylinn BD, Thorner MO (2008) Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men. J Clin Endocrinol Metab 93(5):1980–1987.  https://doi.org/10.1210/jc.2007-2235 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Akamizu T, Shinomiya T, Irako T, Fukunaga M, Nakai Y, Nakai Y, Kangawa K (2005) Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new direct ELISA assay. J Clin Endocrinol Metab 90(1):6–9.  https://doi.org/10.1210/jc.2004-1640 CrossRefPubMedGoogle Scholar
  48. 48.
    Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108(5):2094–2099.  https://doi.org/10.1073/pnas.1011508108 CrossRefPubMedGoogle Scholar
  49. 49.
    Mizutani M, Atsuchi K, Asakawa A, Matsuda N, Fujimura M, Inui A, Kato I, Fujimiya M (2009) Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH. Am J Physiol Gastrointest Liver Physiol 297(5):G974–G980CrossRefPubMedGoogle Scholar
  50. 50.
    De Vriese C, Gregoire F, Lema-Kisoka R, Waelbroeck M, Robberecht P, Delporte C (2004) Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology 145(11):4997–5005.  https://doi.org/10.1210/en.2004-0569 CrossRefPubMedGoogle Scholar
  51. 51.
    Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther 302(2):822–827.  https://doi.org/10.1124/jpet.102.034827 CrossRefPubMedGoogle Scholar
  52. 52.
    Banks WA, Burney BO, Robinson SM (2008) Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood–brain barrier. Peptides 29(11):2061–2065.  https://doi.org/10.1016/j.peptides.2008.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Barazzoni R, Zanetti M, Stebel M, Biolo G, Cattin L, Guarnieri G (2003) Hyperleptinemia prevents increased plasma ghrelin concentration during short-term moderate caloric restriction in rats. Gastroenterology 124(5):1188–1192CrossRefPubMedGoogle Scholar
  54. 54.
    Gualillo O, Caminos JE, Nogueiras R, Seoane LM, Arvat E, Ghigo E, Casanueva FF, Dieguez C (2002) Effect of food restriction on ghrelin in normal-cycling female rats and in pregnancy. Obes Res 10(7):682–687.  https://doi.org/10.1038/oby.2002.92 CrossRefPubMedGoogle Scholar
  55. 55.
    Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117(1):13–23.  https://doi.org/10.1172/JCI30227 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50(8):1714–1719CrossRefPubMedGoogle Scholar
  57. 57.
    Tschop M, Wawarta R, Riepl RL, Friedrich S, Bidlingmaier M, Landgraf R, Folwaczny C (2001) Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Invest 24(6):RC19–R21.  https://doi.org/10.1007/BF03351037 CrossRefPubMedGoogle Scholar
  58. 58.
    Cummings DE, Foster-Schubert KE, Overduin J (2005) Ghrelin and energy balance: focus on current controversies. Curr Drug Targets 6(2):153–169CrossRefPubMedGoogle Scholar
  59. 59.
    Sanchez J, Oliver P, Palou A, Pico C (2004) The inhibition of gastric ghrelin production by food intake in rats is dependent on the type of macronutrient. Endocrinology 145(11):5049–5055.  https://doi.org/10.1210/en.2004-0493 CrossRefPubMedGoogle Scholar
  60. 60.
    Otto B, Cuntz U, Fruehauf E, Wawarta R, Folwaczny C, Riepl RL, Heiman ML, Lehnert P, Fichter M, Tschop M (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145(5):669–673CrossRefPubMedGoogle Scholar
  61. 61.
    Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50(4):707–709CrossRefPubMedGoogle Scholar
  62. 62.
    Barazzoni R, Zanetti M, Ferreira C, Vinci P, Pirulli A, Mucci M, Dore F, Fonda M, Ciocchi B, Cattin L, Guarnieri G (2007) Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab 92(10):3935–3940.  https://doi.org/10.1210/jc.2006-2527 CrossRefPubMedGoogle Scholar
  63. 63.
    Barazzoni R, Zanetti M, Nagliati C, Cattin MR, Ferreira C, Giuricin M, Palmisano S, Edalucci E, Dore F, Guarnieri G, de Manzini N (2013) Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity (Silver Spring) 21(4):718–722.  https://doi.org/10.1002/oby.20272 CrossRefGoogle Scholar
  64. 64.
    Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, Schurmann A, Joost HG, Jandacek RJ, Hale JE, Heiman ML, Tschop MH (2009) GOAT links dietary lipids with the endocrine control of energy balance. Nat Med 15(7):741–745.  https://doi.org/10.1038/nm.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, Yanase T, Nawata H, Kangawa K, Kojima M (2005) Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin. Endocrinology 146(5):2255–2264.  https://doi.org/10.1210/en.2004-0695 CrossRefPubMedGoogle Scholar
  66. 66.
    Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Dore F, Giacca M, Zanetti M, Vinci P, Guarnieri G (2017) Intravenous lipid infusion and total plasma fatty acids positively modulate plasma acylated ghrelin in vivo. Clin Nutr 36(3):775–781.  https://doi.org/10.1016/j.clnu.2016.05.017 CrossRefPubMedGoogle Scholar
  67. 67.
    Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D’Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Dieguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrere B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LH, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschop MH (2015) Ghrelin. Mol Metab 4(6):437–460.  https://doi.org/10.1016/j.molmet.2015.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Bednarek MA, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Silva MV, Warren VA, Howard AD, Van Der Ploeg LH, Heck JV (2000) Structure–function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. J Med Chem 43(23):4370–4376CrossRefPubMedGoogle Scholar
  69. 69.
    Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M (2002) The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87(6):2988.  https://doi.org/10.1210/jcem.87.6.8739 CrossRefPubMedGoogle Scholar
  70. 70.
    Hattori N, Saito T, Yagyu T, Jiang BH, Kitagawa K, Inagaki C (2001) GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils. J Clin Endocrinol Metab 86(9):4284–4291.  https://doi.org/10.1210/jcem.86.9.7866 CrossRefPubMedGoogle Scholar
  71. 71.
    Shuto Y, Shibasaki T, Wada K, Parhar I, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I (2001) Generation of polyclonal antiserum against the growth hormone secretagogue receptor (GHS-R): evidence that the GHS-R exists in the hypothalamus, pituitary and stomach of rats. Life Sci 68(9):991–996CrossRefPubMedGoogle Scholar
  72. 72.
    Papotti M, Ghe C, Cassoni P, Catapano F, Deghenghi R, Ghigo E, Muccioli G (2000) Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab 85(10):3803–3807.  https://doi.org/10.1210/jcem.85.10.6846 CrossRefPubMedGoogle Scholar
  73. 73.
    Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48(1):23–29CrossRefGoogle Scholar
  74. 74.
    Gershon E, Vale WW (2014) CRF type 2 receptors mediate the metabolic effects of ghrelin in C2C12 cells. Obesity (Silver Spring) 22(2):380–389.  https://doi.org/10.1002/oby.20535 CrossRefGoogle Scholar
  75. 75.
    McGirr R, McFarland MS, McTavish J, Luyt LG, Dhanvantari S (2011) Design and characterization of a fluorescent ghrelin analog for imaging the growth hormone secretagogue receptor 1a. Regul Pept 172(1–3):69–76.  https://doi.org/10.1016/j.regpep.2011.08.011 CrossRefPubMedGoogle Scholar
  76. 76.
    Moreno M, Chaves JF, Sancho-Bru P, Ramalho F, Ramalho LN, Mansego ML, Ivorra C, Dominguez M, Conde L, Millan C, Mari M, Colmenero J, Lozano JJ, Jares P, Vidal J, Forns X, Arroyo V, Caballeria J, Gines P, Bataller R (2010) Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology 51(3):974–985.  https://doi.org/10.1002/hep.23421 CrossRefPubMedGoogle Scholar
  77. 77.
    Ueberberg B, Unger N, Saeger W, Mann K, Petersenn S (2009) Expression of ghrelin and its receptor in human tissues. Horm Metab Res 41(11):814–821.  https://doi.org/10.1055/s-0029-1233462 CrossRefPubMedGoogle Scholar
  78. 78.
    Filigheddu N, Gnocchi VF, Coscia M, Cappelli M, Porporato PE, Taulli R, Traini S, Baldanzi G, Chianale F, Cutrupi S, Arnoletti E, Ghe C, Fubini A, Surico N, Sinigaglia F, Ponzetto C, Muccioli G, Crepaldi T, Graziani A (2007) Ghrelin and des-acyl ghrelin promote differentiation and fusion of C2C12 skeletal muscle cells. Mol Biol Cell 18(3):986–994.  https://doi.org/10.1091/mbc.E06-05-0402 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sun Y, Garcia JM, Smith RG (2007) Ghrelin and growth hormone secretagogue receptor expression in mice during aging. Endocrinology 148(3):1323–1329.  https://doi.org/10.1210/en.2006-0782 CrossRefPubMedGoogle Scholar
  80. 80.
    Callaghan B, Furness JB (2014) Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds. Pharmacol Rev 66(4):984–1001.  https://doi.org/10.1124/pr.113.008433 CrossRefPubMedGoogle Scholar
  81. 81.
    Muccioli G, Baragli A, Granata R, Papotti M, Ghigo E (2007) Heterogeneity of ghrelin/growth hormone secretagogue receptors. Toward the understanding of the molecular identity of novel ghrelin/GHS receptors. Neuroendocrinology 86(3):147–164.  https://doi.org/10.1159/000105141 CrossRefPubMedGoogle Scholar
  82. 82.
    Dardzinska JA, Malgorzewicz S, Kaska L, Proczko M, Stefaniak T, Stankiewicz M, Sledzinski Z (2014) Fasting and postprandial acyl and desacyl ghrelin levels in obese and non-obese subjects. Endokrynol Pol 65(5):377–381.  https://doi.org/10.5603/EP.2014.0052 CrossRefPubMedGoogle Scholar
  83. 83.
    Gil-Campos M, Aguilera CM, Canete R, Gil A (2006) Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 96(2):201–226CrossRefPubMedGoogle Scholar
  84. 84.
    Barazzoni R, Gortan Cappellari G, Zanetti M, Guarnieri G (2012) Ghrelin and muscle metabolism in chronic uremia. J Ren Nutr 22(1):171–175.  https://doi.org/10.1053/j.jrn.2011.10.017 CrossRefPubMedGoogle Scholar
  85. 85.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409(6817):194–198.  https://doi.org/10.1038/35051587 CrossRefGoogle Scholar
  86. 86.
    Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, Batterham RL, Taheri S, Stanley SA, Ghatei MA, Bloom SR (2001) Ghrelin causes hyperphagia and obesity in rats. Diabetes 50(11):2540–2547CrossRefPubMedGoogle Scholar
  87. 87.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407(6806):908–913.  https://doi.org/10.1038/35038090 CrossRefPubMedGoogle Scholar
  88. 88.
    Dornonville de la Cour C, Lindqvist A, Egecioglu E, Tung YC, Surve V, Ohlsson C, Jansson JO, Erlanson-Albertsson C, Dickson SL, Hakanson R (2005) Ghrelin treatment reverses the reduction in weight gain and body fat in gastrectomised mice. Gut 54(7):907–913.  https://doi.org/10.1136/gut.2004.058578 CrossRefGoogle Scholar
  89. 89.
    Adachi S, Takiguchi S, Okada K, Yamamoto K, Yamasaki M, Miyata H, Nakajima K, Fujiwara Y, Hosoda H, Kangawa K, Mori M, Doki Y (2010) Effects of ghrelin administration after total gastrectomy: a prospective, randomized, placebo-controlled phase II study. Gastroenterology 138(4):1312–1320.  https://doi.org/10.1053/j.gastro.2009.12.058 CrossRefPubMedGoogle Scholar
  90. 90.
    Arnold M, Mura A, Langhans W, Geary N (2006) Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J Neurosci 26(43):11052–11060.  https://doi.org/10.1523/JNEUROSCI.2606-06.2006 CrossRefPubMedGoogle Scholar
  91. 91.
    Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, Harvey-White J, Liposits Z, Kunos G, Grossman AB, Fekete C, Korbonits M (2008) The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PloS One 3(3):e1797.  https://doi.org/10.1371/journal.pone.0001797 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Bagnasco M, Dube MG, Kalra PS, Kalra SP (2002) Evidence for the existence of distinct central appetite, energy expenditure, and ghrelin stimulation pathways as revealed by hypothalamic site-specific leptin gene therapy. Endocrinology 143(11):4409–4421CrossRefPubMedGoogle Scholar
  93. 93.
    Wang L, Saint-Pierre DH, Tache Y (2002) Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett 325(1):47–51CrossRefPubMedGoogle Scholar
  94. 94.
    Willesen MG, Kristensen P, Romer J (1999) Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70(5):306–316CrossRefPubMedGoogle Scholar
  95. 95.
    Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494(3):528–548.  https://doi.org/10.1002/cne.20823 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7(5):400–409.  https://doi.org/10.1016/j.cmet.2008.03.007 CrossRefPubMedGoogle Scholar
  97. 97.
    Asakawa A, Inui A, Fujimiya M, Sakamaki R, Shinfuku N, Ueta Y, Meguid MM, Kasuga M (2005) Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut 54(1):18–24.  https://doi.org/10.1136/gut.2004.038737 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Inhoff T, Monnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, Klapp BF, Tache Y, Kobelt P (2008) Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 29(12):2159–2168.  https://doi.org/10.1016/j.peptides.2008.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Toshinai K, Yamaguchi H, Sun Y, Smith RG, Yamanaka A, Sakurai T, Date Y, Mondal MS, Shimbara T, Kawagoe T, Murakami N, Miyazato M, Kangawa K, Nakazato M (2006) Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinology 147(5):2306–2314.  https://doi.org/10.1210/en.2005-1357 CrossRefPubMedGoogle Scholar
  100. 100.
    Barazzoni R, Deutz NEP, Biolo G, Bischoff S, Boirie Y, Cederholm T, Cuerda C, Delzenne N, Leon Sanz M, Ljungqvist O, Muscaritoli M, Pichard C, Preiser JC, Sbraccia P, Singer P, Tappy L, Thorens B, Van Gossum A, Vettor R, Calder PC (2017) Carbohydrates and insulin resistance in clinical nutrition: recommendations from the ESPEN expert group. Clin Nutr 36(2):355–363.  https://doi.org/10.1016/j.clnu.2016.09.010 CrossRefPubMedGoogle Scholar
  101. 101.
    Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, van der Lely AJ, Deghenghi R, Ghigo E (2001) Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86(10):5083–5086.  https://doi.org/10.1210/jcem.86.10.8098 CrossRefPubMedGoogle Scholar
  102. 102.
    Tong J, Prigeon RL, Davis HW, Bidlingmaier M, Kahn SE, Cummings DE, Tschop MH, D’Alessio D (2010) Ghrelin suppresses glucose-stimulated insulin secretion and deteriorates glucose tolerance in healthy humans. Diabetes 59(9):2145–2151.  https://doi.org/10.2337/db10-0504 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sun Y, Butte NF, Garcia JM, Smith RG (2008) Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology 149(2):843–850.  https://doi.org/10.1210/en.2007-0271 CrossRefPubMedGoogle Scholar
  104. 104.
    Dezaki K, Kakei M, Yada T (2007) Ghrelin uses Galphai2 and activates voltage-dependent K+ channels to attenuate glucose-induced Ca2+ signaling and insulin release in islet beta-cells: novel signal transduction of ghrelin. Diabetes 56(9):2319–2327.  https://doi.org/10.2337/db07-0345 CrossRefPubMedGoogle Scholar
  105. 105.
    Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O (2003) Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes 52(10):2546–2553CrossRefPubMedGoogle Scholar
  106. 106.
    Barazzoni R, Zanetti M, Stulle M, Mucci MP, Pirulli A, Dore F, Panzetta G, Vasile A, Biolo G, Guarnieri G (2008) Higher total ghrelin levels are associated with higher insulin-mediated glucose disposal in non-diabetic maintenance hemodialysis patients. Clin Nutr 27(1):142–149.  https://doi.org/10.1016/j.clnu.2007.06.013 CrossRefPubMedGoogle Scholar
  107. 107.
    McLaughlin T, Abbasi F, Lamendola C, Frayo RS, Cummings DE (2004) Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. J Clin Endocrinol Metab 89(4):1630–1635.  https://doi.org/10.1210/jc.2003-031572 CrossRefPubMedGoogle Scholar
  108. 108.
    Zanetti M, Gortan Cappellari G, Semolic A, Burekovic I, Fonda M, Cattin L, Barazzoni R (2017) Gender-specific association of desacylated ghrelin with subclinical atherosclerosis in the metabolic syndrome. Arch Med Res.  https://doi.org/10.1016/j.arcmed.2017.09.002 CrossRefPubMedGoogle Scholar
  109. 109.
    Broglio F, Gottero C, Prodam F, Gauna C, Muccioli G, Papotti M, Abribat T, Van Der Lely AJ, Ghigo E (2004) Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab 89(6):3062–3065.  https://doi.org/10.1210/jc.2003-031964 CrossRefPubMedGoogle Scholar
  110. 110.
    Gauna C, Kiewiet RM, Janssen JA, van de Zande B, Delhanty PJ, Ghigo E, Hofland LJ, Themmen AP, van der Lely AJ (2007) Unacylated ghrelin acts as a potent insulin secretagogue in glucose-stimulated conditions. Am J Physiol Endocrinol Metab 293(3):E697–E704.  https://doi.org/10.1152/ajpendo.00219.2007 CrossRefPubMedGoogle Scholar
  111. 111.
    Barazzoni R, Gortan Cappellari G, Semolic A, Chendi E, Ius M, Situlin R, Zanetti M, Vinci P, Guarnieri G (2014) The association between hematological parameters and insulin resistance is modified by body mass index—results from the North-East Italy MoMa population study. PloS One 9(7):e101590.  https://doi.org/10.1371/journal.pone.0101590 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Mamolo L, Dore F, Giacca M, Zanetti M, Vinci P, Guarnieri G (2016) Plasma total and unacylated ghrelin predict 5-year changes in insulin resistance. Clin Nutr 35(5):1168–1173.  https://doi.org/10.1016/j.clnu.2015.10.002 CrossRefPubMedGoogle Scholar
  113. 113.
    Granata R, Settanni F, Biancone L, Trovato L, Nano R, Bertuzzi F, Destefanis S, Annunziata M, Martinetti M, Catapano F, Ghe C, Isgaard J, Papotti M, Ghigo E, Muccioli G (2007) Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human islets: involvement of 3′,5′-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-kinase/Akt signaling. Endocrinology 148(2):512–529.  https://doi.org/10.1210/en.2006-0266 CrossRefPubMedGoogle Scholar
  114. 114.
    Gauna C, Delhanty PJ, van Aken MO, Janssen JA, Themmen AP, Hofland LJ, Culler M, Broglio F, Ghigo E, van der Lely AJ (2006) Unacylated ghrelin is active on the INS-1E rat insulinoma cell line independently of the growth hormone secretagogue receptor type 1a and the corticotropin releasing factor 2 receptor. Mol Cell Endocrinol 251(1–2):103–111.  https://doi.org/10.1016/j.mce.2006.03.040 CrossRefPubMedGoogle Scholar
  115. 115.
    Tong J, Davis HW, Summer S, Benoit SC, Haque A, Bidlingmaier M, Tschop MH, D’Alessio D (2014) Acute administration of unacylated ghrelin has no effect on Basal or stimulated insulin secretion in healthy humans. Diabetes 63(7):2309–2319.  https://doi.org/10.2337/db13-1598 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Heijboer AC, van den Hoek AM, Parlevliet ET, Havekes LM, Romijn JA, Pijl H, Corssmit EP (2006) Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia 49(4):732–738.  https://doi.org/10.1007/s00125-006-0138-2 CrossRefPubMedGoogle Scholar
  117. 117.
    Barazzoni R, Bosutti A, Stebel M, Cattin MR, Roder E, Visintin L, Cattin L, Biolo G, Zanetti M, Guarnieri G (2005) Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab 288(1):E228–E235.  https://doi.org/10.1152/ajpendo.00115.2004 CrossRefPubMedGoogle Scholar
  118. 118.
    Pardo M, Roca-Rivada A, Al-Massadi O, Seoane LM, Camina JP, Casanueva FF (2010) Peripheral leptin and ghrelin receptors are regulated in a tissue-specific manner in activity-based anorexia. Peptides 31(10):1912–1919.  https://doi.org/10.1016/j.peptides.2010.06.022 CrossRefPubMedGoogle Scholar
  119. 119.
    van Thuijl H, Kola B, Korbonits M (2008) Appetite and metabolic effects of ghrelin and cannabinoids: involvement of AMP-activated protein kinase. Vitam Horm 77:121–148.  https://doi.org/10.1016/S0083-6729(06)77006-6 CrossRefPubMedGoogle Scholar
  120. 120.
    Gauna C, Delhanty PJ, Hofland LJ, Janssen JA, Broglio F, Ross RJ, Ghigo E, van der Lely AJ (2005) Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J Clin Endocrinol Metab 90(2):1055–1060.  https://doi.org/10.1210/jc.2004-1069 CrossRefPubMedGoogle Scholar
  121. 121.
    Barazzoni R, Zanetti M, Cattin MR, Visintin L, Vinci P, Cattin L, Stebel M, Guarnieri G (2007) Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rats. Obesity 15(11):2614–2623.  https://doi.org/10.1038/oby.2007.313 CrossRefPubMedGoogle Scholar
  122. 122.
    Obay BD, Tasdemir E, Tumer C, Bilgin H, Atmaca M (2008) Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model. Peptides 29(3):448–455.  https://doi.org/10.1016/j.peptides.2007.11.020 CrossRefPubMedGoogle Scholar
  123. 123.
    Li Y, Hai J, Li L, Chen X, Peng H, Cao M, Zhang Q (2013) Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrine 43(2):376–386.  https://doi.org/10.1007/s12020-012-9761-5 CrossRefPubMedGoogle Scholar
  124. 124.
    Barazzoni R, Semolic A, Cattin MR, Zanetti M, Guarnieri G (2014) Acylated ghrelin limits fat accumulation and improves redox state and inflammation markers in the liver of high-fat-fed rats. Obesity (Silver Spring) 22(1):170–177.  https://doi.org/10.1002/oby.20454 CrossRefGoogle Scholar
  125. 125.
    Murata M, Okimura Y, Iida K, Matsumoto M, Sowa H, Kaji H, Kojima M, Kangawa K, Chihara K (2002) Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J Biol Chem 277(7):5667–5674.  https://doi.org/10.1074/jbc.M103898200 CrossRefPubMedGoogle Scholar
  126. 126.
    Liu HY, Hong T, Wen GB, Han J, Zuo D, Liu Z, Cao W (2009) Increased basal level of Akt-dependent insulin signaling may be responsible for the development of insulin resistance. Am J Physiol Endocrinol Metab 297(4):E898–E906.  https://doi.org/10.1152/ajpendo.00374.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Gortan Cappellari G, Zanetti M, Semolic A, Vinci P, Ruozi G, Falcione A, Filigheddu N, Guarnieri G, Graziani A, Giacca M, Barazzoni R (2016) Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents. Diabetes 65(4):874–886.  https://doi.org/10.2337/db15-1019 CrossRefPubMedGoogle Scholar
  128. 128.
    Gortan Cappellari G, Zanetti M, Semolic A, Vinci P, Ruozi G, De Nardo M, Filigheddu N, Guarnieri G, Giacca M, Graziani A (2015) Unacylated ghrelin does not alter mitochondrial function, redox state and triglyceride content in rat liver in vivo. Clin Nutr Exp 4:1–7CrossRefGoogle Scholar
  129. 129.
    Rossetti A, Togliatto G, Rolo AP, Teodoro JS, Granata R, Ghigo E, Columbano A, Palmeira CM, Brizzi MF (2017) Unacylated ghrelin prevents mitochondrial dysfunction in a model of ischemia/reperfusion liver injury. Cell Death Discov 3:17077.  https://doi.org/10.1038/cddiscovery.2017.77 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Davies JS, Kotokorpi P, Eccles SR, Barnes SK, Tokarczuk PF, Allen SK, Whitworth HS, Guschina IA, Evans BA, Mode A, Zigman JM, Wells T (2009) Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol Endocrinol 23(6):914–924.  https://doi.org/10.1210/me.2008-0432 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Muccioli G, Pons N, Ghe C, Catapano F, Granata R, Ghigo E (2004) Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor. Eur J Pharmacol 498(1–3):27–35.  https://doi.org/10.1016/j.ejphar.2004.07.066 CrossRefPubMedGoogle Scholar
  132. 132.
    Perez-Tilve D, Heppner K, Kirchner H, Lockie SH, Woods SC, Smiley DL, Tschop M, Pfluger P (2011) Ghrelin-induced adiposity is independent of orexigenic effects. FASEB J 25(8):2814–2822.  https://doi.org/10.1096/fj.11-183632 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Wortley KE, del Rincon JP, Murray JD, Garcia K, Iida K, Thorner MO, Sleeman MW (2005) Absence of ghrelin protects against early-onset obesity. J Clin Invest 115(12):3573–3578.  https://doi.org/10.1172/JCI26003 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD, Williams TD, Lachey JL, Seeley RJ, Lowell BB, Elmquist JK (2005) Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Invest 115(12):3564–3572.  https://doi.org/10.1172/JCI26002 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Kim MS, Yoon CY, Jang PG, Park YJ, Shin CS, Park HS, Ryu JW, Pak YK, Park JY, Lee KU, Kim SY, Lee HK, Kim YB, Park KS (2004) The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes. Mol Endocrinol 18(9):2291–2301.  https://doi.org/10.1210/me.2003-0459 CrossRefPubMedGoogle Scholar
  136. 136.
    Choi K, Roh SG, Hong YH, Shrestha YB, Hishikawa D, Chen C, Kojima M, Kangawa K, Sasaki S (2003) The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 144(3):754–759.  https://doi.org/10.1210/en.2002-220783 CrossRefPubMedGoogle Scholar
  137. 137.
    Andrews ZB, Erion DM, Beiler R, Choi CS, Shulman GI, Horvath TL (2010) Uncoupling protein-2 decreases the lipogenic actions of ghrelin. Endocrinology 151(5):2078–2086.  https://doi.org/10.1210/en.2009-0850 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Miegueu P, St Pierre D, Broglio F, Cianflone K (2011) Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes. J Cell Biochem 112(2):704–714.  https://doi.org/10.1002/jcb.22983 CrossRefPubMedGoogle Scholar
  139. 139.
    Zhang W, Chai B, Li JY, Wang H, Mulholland MW (2008) Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology 149(9):4710–4716.  https://doi.org/10.1210/en.2008-0263 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, Pirulli A, Cattin L, Guarnieri G (2012) Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia 55(3):773–782.  https://doi.org/10.1007/s00125-011-2396-x CrossRefPubMedGoogle Scholar
  141. 141.
    Zanetti M, Barazzoni R, Guarnieri G (2008) Inflammation and insulin resistance in uremia. J Ren Nutr 18(1):70–75.  https://doi.org/10.1053/j.jrn.2007.10.015 CrossRefPubMedGoogle Scholar
  142. 142.
    Barazzoni R (2004) Skeletal muscle mitochondrial protein metabolism and function in ageing and type 2 diabetes. Curr Opin Clin Nutr Metab Care 7(1):97–102CrossRefPubMedGoogle Scholar
  143. 143.
    Guarnieri G, Zanetti M, Vinci P, Cattin MR, Barazzoni R (2009) Insulin resistance in chronic uremia. J Ren Nutr 19(1):20–24.  https://doi.org/10.1053/j.jrn.2008.11.014 CrossRefPubMedGoogle Scholar
  144. 144.
    Gortan Cappellari G, Zanetti M, Vinci P, Guarnieri G, Barazzoni R (2017) Unacylated ghrelin: a novel regulator of muscle intermediate metabolism with potential beneficial effects in chronic kidney disease. J Ren Nutr 27(6):474–477.  https://doi.org/10.1053/j.jrn.2017.05.005 CrossRefPubMedGoogle Scholar
  145. 145.
    Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294(2):E345–E351.  https://doi.org/10.1152/ajpendo.00456.2007 CrossRefPubMedGoogle Scholar
  146. 146.
    Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298.  https://doi.org/10.1016/j.cell.2004.09.027 CrossRefPubMedGoogle Scholar
  147. 147.
    Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118(9):2992–3002.  https://doi.org/10.1172/JCI34260 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55 Suppl 2:S9–S15.  https://doi.org/10.2337/diabetes CrossRefPubMedGoogle Scholar
  149. 149.
    Saleh MC, Wheeler MB, Chan CB (2002) Uncoupling protein-2: evidence for its function as a metabolic regulator. Diabetologia 45(2):174–187.  https://doi.org/10.1007/s00125-001-0737-x CrossRefPubMedGoogle Scholar
  150. 150.
    Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415(6867):96–99.  https://doi.org/10.1038/415096a CrossRefPubMedGoogle Scholar
  151. 151.
    Barazzoni R, Zanetti M, Bosutti A, Biolo G, Vitali-Serdoz L, Stebel M, Guarnieri G (2005) Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle–tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 146(4):2098–2106.  https://doi.org/10.1210/en.2004-1396 CrossRefPubMedGoogle Scholar
  152. 152.
    Barazzoni R, Zhu X, Deboer M, Datta R, Culler MD, Zanetti M, Guarnieri G, Marks DL (2010) Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney Int 77(1):23–28.  https://doi.org/10.1038/ki.2009.411 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, Semolic A, Ebner N, von Heahling S, Sinagra G, Giacca M, Springer J (2017) Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachex Sarcopenia Muscle.  https://doi.org/10.1002/jcsm.12254 CrossRefGoogle Scholar
  154. 154.
    Suematsu M, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Matsumoto K, Kitagawa N, Akatsuka H, Hori Y, Nakatani K, Togashi K, Yano Y, Adachi Y (2005) Decreased circulating levels of active ghrelin are associated with increased oxidative stress in obese subjects. Eur J Endocrinol 153(3):403–407.  https://doi.org/10.1530/eje.1.01977 CrossRefPubMedGoogle Scholar
  155. 155.
    Omrani H, Alipour MR, Mohaddes G (2015) Ghrelin improves antioxidant defense in blood and brain in normobaric hypoxia in adult male rats. Adv Pharm Bull 5(2):283–288.  https://doi.org/10.15171/apb.2015.039 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    El Eter E, Al Tuwaijiri A, Hagar H, Arafa M (2007) In vivo and in vitro antioxidant activity of ghrelin: attenuation of gastric ischemic injury in the rat. J Gastroenterol Hepatol 22(11):1791–1799.  https://doi.org/10.1111/j.1440-1746.2006.04696.x CrossRefPubMedGoogle Scholar
  157. 157.
    Iseri SO, Sener G, Yuksel M, Contuk G, Cetinel S, Gedik N, Yegen BC (2005) Ghrelin against alendronate-induced gastric damage in rats. J Endocrinol 187(3):399–406.  https://doi.org/10.1677/joe.1.06432 CrossRefPubMedGoogle Scholar
  158. 158.
    Chang L, Ren Y, Liu X, Li WG, Yang J, Geng B, Weintraub NL, Tang C (2004) Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J Cardiovasc Pharmacol 43(2):165–170CrossRefPubMedGoogle Scholar
  159. 159.
    Kheradmand A, Alirezaei M, Birjandi M (2010) Ghrelin promotes antioxidant enzyme activity and reduces lipid peroxidation in the rat ovary. Regul Pept 162(1–3):84–89.  https://doi.org/10.1016/j.regpep.2010.02.008 CrossRefPubMedGoogle Scholar
  160. 160.
    Zwirska-Korczala K, Adamczyk-Sowa M, Sowa P, Pilc K, Suchanek R, Pierzchala K, Namyslowski G, Misiolek M, Sodowski K, Kato I, Kuwahara A, Zabielski R (2007) Role of leptin, ghrelin, angiotensin II and orexins in 3T3 L1 preadipocyte cells proliferation and oxidative metabolism. J Physiol Pharmacol 58(Suppl 1):53–64PubMedGoogle Scholar
  161. 161.
    Neamati S, Alirezaei M, Kheradmand A (2011) Ghrelin acts as an antioxidant agent in the rat kidney. Int J Pept Res Ther 17(3):239–245CrossRefGoogle Scholar
  162. 162.
    Barazzoni R, Zanetti M, Semolic A, Cattin MR, Pirulli A, Cattin L, Guarnieri G (2011) High-fat diet with acyl-ghrelin treatment leads to weight gain with low inflammation, high oxidative capacity and normal triglycerides in rat muscle. PLoS One 6(10):e26224.  https://doi.org/10.1371/journal.pone.0026224 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, Zentilin L, Filigheddu N, Gortan Cappellari G, Baldini G, Zweyer M, Barazzoni R, Graziani A, Zacchigna S, Giacca M (2015) AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun 6:7388.  https://doi.org/10.1038/ncomms8388 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Togliatto G, Trombetta A, Dentelli P, Cotogni P, Rosso A, Tschop MH, Granata R, Ghigo E, Brizzi MF (2013) Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Heart Assoc 2(6):e000376.  https://doi.org/10.1161/JAHA.113.000376 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Togliatto G, Trombetta A, Dentelli P, Gallo S, Rosso A, Cotogni P, Granata R, Falcioni R, Delale T, Ghigo E, Brizzi MF (2015) Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 64(4):1370–1382.  https://doi.org/10.2337/db14-0991 CrossRefPubMedGoogle Scholar
  166. 166.
    Gortan Cappellari G, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R (2017) Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J.  https://doi.org/10.1096/fj.201700126R CrossRefPubMedGoogle Scholar
  167. 167.
    Baatar D, Patel K, Taub DD (2011) The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 340(1):44–58.  https://doi.org/10.1016/j.mce.2011.04.019 CrossRefPubMedGoogle Scholar
  168. 168.
    Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Investig 114(1):57–66.  https://doi.org/10.1172/JCI21134 CrossRefPubMedGoogle Scholar
  169. 169.
    Yilmaz Z, Ilcol YO, Ulus IH (2008) Endotoxin increases plasma leptin and ghrelin levels in dogs. Crit Care Med 36(3):828–833.  https://doi.org/10.1097/01.CCM.0B013E3181611F5AA CrossRefPubMedGoogle Scholar
  170. 170.
    Vila G, Maier C, Riedl M, Nowotny P, Ludvik B, Luger A, Clodi M (2007) Bacterial endotoxin induces biphasic changes in plasma ghrelin in healthy humans. J Clin Endocrinol Metab 92(10):3930–3934.  https://doi.org/10.1210/jc.2007-1194 CrossRefPubMedGoogle Scholar
  171. 171.
    Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK (2008) Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways. Surgery 143(3):334–342.  https://doi.org/10.1016/j.surg.2007.09.039 CrossRefPubMedGoogle Scholar
  172. 172.
    Gonzalez-Rey E, Chorny A, Delgado M (2006) Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 130(6):1707–1720.  https://doi.org/10.1053/j.gastro.2006.01.041 CrossRefPubMedGoogle Scholar
  173. 173.
    Kodama T, Ashitani J, Matsumoto N, Kangawa K, Nakazato M (2008) Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. Pulm Pharmacol Ther 21(5):774–779.  https://doi.org/10.1016/j.pupt.2008.05.001 CrossRefPubMedGoogle Scholar
  174. 174.
    Takata A, Takiguchi S, Miyazaki Y, Miyata H, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Mori M, Kangawa K, Doki Y (2015) Randomized phase II study of the anti-inflammatory effect of ghrelin during the postoperative period of esophagectomy. Ann Surg 262(2):230–236.  https://doi.org/10.1097/SLA.0000000000000986 CrossRefPubMedGoogle Scholar
  175. 175.
    Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, Carruba MO, Nisoli E (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Investig 116(10):2791–2798.  https://doi.org/10.1172/JCI28570 CrossRefPubMedGoogle Scholar
  176. 176.
    Han D, Huang W, Ma S, Chen J, Gao L, Liu T, Zhang R, Li X, Li C, Fan M, Chen Y, Cao F (2015) Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through PI3K/Akt signaling pathway. BioMed Res Int 2015:858349.  https://doi.org/10.1155/2015/858349 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Hao XK, Wu W, Wang CX, Xie GB, Li T, Wu HM, Huang LT, Zhou ML, Hang CH, Shi JX (2014) Ghrelin alleviates early brain injury after subarachnoid hemorrhage via the PI3K/Akt signaling pathway. Brain Res 1587:15–22.  https://doi.org/10.1016/j.brainres.2014.08.069 CrossRefPubMedGoogle Scholar
  178. 178.
    Waseem T, Duxbury M, Ashley SW, Robinson MK (2014) Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation. Peptides 52:113–121.  https://doi.org/10.1016/j.peptides.2013.11.021 CrossRefPubMedGoogle Scholar
  179. 179.
    Yang D, Liu Z, Zhang H, Luo Q (2013) Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt. Peptides 42:112–117.  https://doi.org/10.1016/j.peptides.2013.01.012 CrossRefPubMedGoogle Scholar
  180. 180.
    Chen X, Chen Q, Wang L, Li G (2013) Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metab Clin Exp 62(5):743–752.  https://doi.org/10.1016/j.metabol.2012.09.014 CrossRefPubMedGoogle Scholar
  181. 181.
    Vestergaard ET, Djurhuus CB, Gjedsted J, Nielsen S, Moller N, Holst JJ, Jorgensen JO, Schmitz O (2008) Acute effects of ghrelin administration on glucose and lipid metabolism. J Clin Endocrinol Metab 93(2):438–444.  https://doi.org/10.1210/jc.2007-2018 CrossRefPubMedGoogle Scholar
  182. 182.
    Vestergaard ET, Buhl M, Gjedsted J, Madsen M, Jessen N, Nielsen S, Gaylinn BD, Liu J, Thorner MO, Moller N, Jorgensen JO (2011) Acute peripheral metabolic effects of intraarterial ghrelin infusion in healthy young men. J Clin Endocrinol Metab 96(2):468–477.  https://doi.org/10.1210/jc.2010-1995 CrossRefPubMedGoogle Scholar
  183. 183.
    Lear PV, Iglesias MJ, Feijoo-Bandin S, Rodriguez-Penas D, Mosquera-Leal A, Garcia-Rua V, Gualillo O, Ghe C, Arnoletti E, Muccioli G, Dieguez C, Gonzalez-Juanatey JR, Lago F (2010) Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes. Endocrinology 151(7):3286–3298.  https://doi.org/10.1210/en.2009-1205 CrossRefPubMedGoogle Scholar
  184. 184.
    Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253.  https://doi.org/10.1016/j.abb.2007.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Slupecka M, Wolinski J, Pierzynowski SG (2012) The effects of enteral ghrelin administration on the remodeling of the small intestinal mucosa in neonatal piglets. Regul Pept 174(1–3):38–45.  https://doi.org/10.1016/j.regpep.2011.11.007 CrossRefPubMedGoogle Scholar
  187. 187.
    Tong XX, Wu D, Wang X, Chen HL, Chen JX, Wang XX, Wang XL, Gan L, Guo ZY, Shi GX, Zhang YZ, Jiang W (2012) Ghrelin protects against cobalt chloride-induced hypoxic injury in cardiac H9c2 cells by inhibiting oxidative stress and inducing autophagy. Peptides 38(2):217–227.  https://doi.org/10.1016/j.peptides.2012.06.020 CrossRefPubMedGoogle Scholar
  188. 188.
    Tam BT, Pei XM, Yung BY, Yip SP, Chan LW, Wong CS, Siu PM (2015) Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflug Arch 467(12):2555–2569.  https://doi.org/10.1007/s00424-015-1721-5 CrossRefGoogle Scholar
  189. 189.
    Kuppens RJ, Delhanty PJ, Huisman TM, van der Lely AJ, Hokken-Koelega AC (2016) Acylated and unacylated ghrelin during OGTT in Prader–Willi syndrome: support for normal response to food intake. Clin Endocrinol.  https://doi.org/10.1111/cen.13036 CrossRefGoogle Scholar
  190. 190.
    Choe YH, Song SY, Paik KH, Oh YJ, Chu SH, Yeo SH, Kwon EK, Kim EM, Rha MY, Jin DK (2005) Increased density of ghrelin-expressing cells in the gastric fundus and body in Prader–Willi syndrome. J Clin Endocrinol Metab 90(9):5441–5445.  https://doi.org/10.1210/jc.2004-1935 CrossRefPubMedGoogle Scholar
  191. 191.
    Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, Schwartz MW, Basdevant A, Weigle DS (2002) Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 8(7):643–644.  https://doi.org/10.1038/nm0702-643 CrossRefPubMedGoogle Scholar
  192. 192.
    Nicholls RD, Knepper JL (2001) Genome organization, function, and imprinting in Prader–Willi and Angelman syndromes. Annu Rev Genom Hum Genet 2:153–175.  https://doi.org/10.1146/annurev.genom.2.1.153 CrossRefGoogle Scholar
  193. 193.
    Gagnon J, Zhu L, Anini Y, Wang Q (2015) Neutralizing circulating ghrelin by expressing a growth hormone secretagogue receptor-based protein protects against high-fat diet-induced obesity in mice. Gene Ther 22(9):750–757.  https://doi.org/10.1038/gt.2015.38 CrossRefPubMedGoogle Scholar
  194. 194.
    Wiedmer P, Nogueiras R, Broglio F, D’Alessio D, Tschop MH (2007) Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab 3(10):705–712.  https://doi.org/10.1038/ncpendmet0625 CrossRefPubMedGoogle Scholar
  195. 195.
    Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R, Moncrieffe M, Thabet K, Cox HJ, Yancopoulos GD, Wiegand SJ, Sleeman MW (2004) Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 101(21):8227–8232.  https://doi.org/10.1073/pnas.0402763101 CrossRefPubMedGoogle Scholar
  196. 196.
    McFarlane MR, Brown MS, Goldstein JL, Zhao TJ (2014) Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metab 20(1):54–60.  https://doi.org/10.1016/j.cmet.2014.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Sbraccia P, Nisoli E, Barazzoni R (2018) Obesity: focus on ongoing multidisciplinary and comprehensive research. Eat Weight Disord 23(1):1.  https://doi.org/10.1007/s40519-017-0462-1 CrossRefPubMedGoogle Scholar
  198. 198.
    Barazzoni R, Gortan Cappellari G, Ragni M, Nisoli E (2018) Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord 23(2):149–157.  https://doi.org/10.1007/s40519-018-0481-6 CrossRefPubMedGoogle Scholar
  199. 199.
    Barazzoni R, Bischoff SC, Boirie Y, Busetto L, Cederholm T, Dicker D, Toplak H, Van Gossum A, Yumuk V, Vettor R (2018) Sarcopenic obesity: time to meet the challenge. Clin Nutr.  https://doi.org/10.1016/j.clnu.2018.04.018 CrossRefPubMedGoogle Scholar
  200. 200.
    Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Zanetti M, Gabrielli A, Vinci P, Guarnieri G, Simon G (2018) Central adiposity markers, plasma lipid profile and cardiometabolic risk prediction in overweight-obese individuals. Clin Nutr.  https://doi.org/10.1016/j.clnu.2018.04.014 CrossRefPubMedGoogle Scholar
  201. 201.
    Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Mamolo L, Dore F, Giacca M, Zanetti M, Vinci P, Guarnieri G (2015) Plasma total and unacylated ghrelin predict 5-year changes in insulin resistance. Clin Nutr.  https://doi.org/10.1016/j.clnu.2015.10.002 CrossRefPubMedGoogle Scholar
  202. 202.
    Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87(1):99–109.  https://doi.org/10.1016/j.biochi.2004.10.019 CrossRefPubMedGoogle Scholar
  203. 203.
    Delhanty PJ, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, Leenen PJ, Themmen AP, van der Lely AJ (2013) Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J 27(4):1690–1700.  https://doi.org/10.1096/fj.12-221143 CrossRefPubMedGoogle Scholar
  204. 204.
    Mao Y, Cheng J, Yu F, Li H, Guo C, Fan X (2015) Ghrelin attenuated lipotoxicity via autophagy induction and nuclear factor-kappab inhibition. Cell Physiol Biochem 37(2):563–576.  https://doi.org/10.1159/000430377 CrossRefPubMedGoogle Scholar
  205. 205.
    Bischoff SC, Boirie Y, Cederholm T, Chourdakis M, Cuerda C, Delzenne NM, Deutz NE, Fouque D, Genton L, Gil C, Koletzko B, Leon-Sanz M, Shamir R, Singer J, Singer P, Stroebele-Benschop N, Thorell A, Weimann A, Barazzoni R (2017) Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clin Nutr 36(4):917–938.  https://doi.org/10.1016/j.clnu.2016.11.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
  2. 2.Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS)TriesteItaly

Personalised recommendations