Advertisement

Determinants of metabolic syndrome in obese workers: gender differences in perceived job-related stress and in psychological characteristics identified using artificial neural networks

  • Luisella Vigna
  • Amelia Brunani
  • Agostino Brugnera
  • Enzo Grossi
  • Angelo Compare
  • Amedea S. Tirelli
  • Diana M. Conti
  • Gianna M. Agnelli
  • Lars L. Andersen
  • Massimo Buscema
  • Luciano Riboldi
Original Article
  • 23 Downloads

Abstract

Objective

The metabolic syndrome (MS) is a multifactorial disorder associated with a higher risk of developing cardiovascular diseases and type 2 diabetes. However, its pathophysiology and risk factors are still poorly understood. In this study, we investigated the associations among gender, psychosocial variables, job-related stress and the presence of MS in a cohort of obese Caucasian workers.

Methods

A total of 210 outpatients (142 women, 68 men) from an occupational medicine service was enrolled in the study. Age, BMI, waist circumference, fasting glucose, blood pressure, triglycerides and HDL cholesterol were collected to define MS. In addition, we evaluated eating behaviors, depressive symptoms, and work-related stress. Data analyses were performed with an artificial neural network algorithm called Auto Semantic Connectivity Map (AutoCM), using all available variables.

Results

MS was diagnosed in 54.4 and 33.1% of the men and women, respectively. AutoCM evidenced gender-specific clusters associated with the presence or absence of MS. Men with a moderate occupational physical activity, obesity, older age and higher levels of decision-making freedom at work were more likely to have a diagnosis of MS than women. Women with lower levels of decision-making freedom, and higher levels of psychological demands and social support at work had a lower incidence of MS but showed higher levels of binge eating and depressive symptomatology.

Conclusion

We found a complex gender-related association between MS, psychosocial risk factors and occupational determinants. The use of these information in surveillance workplace programs might prevent the onset of MS and decrease the chance of negative long-term outcomes.

Level of evidence

Level V, observational study.

Keywords

Obesity Metabolic syndrome Gender Eating disorders Depression Occupational determinants ANN Occupational physical activity 

Notes

Funding

The authors did not receive any form of funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and animal participants rights

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

40519_2018_536_MOESM1_ESM.docx (829 kb)
Supplementary material 1 (DOCX 829 KB)

References

  1. 1.
    Ford ES (2005) Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28:1769–1778.  https://doi.org/10.2337/diacare.28.7.1769 CrossRefPubMedGoogle Scholar
  2. 2.
    Cameron AJ, Shaw JE, Zimmet PZ (2004) The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 33:351–375.  https://doi.org/10.1016/j.ecl.2004.03.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Manzato E, Bolognesi A, Simoni M, Cuzzolaro M (2015) Risk factors for weight gain: a longitudinal study in non-weight loss treatment-seeking overweight adults. Eat Weight Disord 2015:371–2788.  https://doi.org/10.1007/s40519-014-0174-8 CrossRefGoogle Scholar
  4. 4.
    Chandola T, Brunner E, Marmot MG (2006) Chronic stress at work and the metabolic syndrome: prospective study. BMJ 332:521–525.  https://doi.org/10.1136/bmj.38693.435301.80 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Diene E, Fouquet A, Esquirol Y (2012) Cardiovascular diseases and psychosocial factors at work. Arch Cardiovasc Dis 105:33–39.  https://doi.org/10.1016/j.acvd.2011.10.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Heraclides AM, Chandola T, Witte DR, Brunner EJ (2012) Work stress, obesity and the risk of type 2 diabetes: gender-specific bidirectional effect in the Whitehall II study. Obesity (Silver Spring) 20:428–433.  https://doi.org/10.1038/oby.2011.95 CrossRefGoogle Scholar
  7. 7.
    Chandola T, Britton A, Brunner E, Hemingway H, Malik M, Kumari M, Badrick E, Kivimaki M, Marmot M (2008) Work stress and coronary heart disease: what are the mechanisms? Eur Heart J 29:640–648CrossRefPubMedGoogle Scholar
  8. 8.
    Strine TW, Mokdad AH, Dube SR, Balluz LS, Gonzalez O, Berry JT, Manderscheid R, Kroenke K (2008) The association of depression and anxiety with obesity and unhealthy behaviours among community-dwelling US adults. Gen Hosp Psychiatry 30:127–137.  https://doi.org/10.1016/j.genhosppsych.2007.12.008 CrossRefPubMedGoogle Scholar
  9. 9.
    Grucza RA, Przybeck TR, Cloninger CR (2007) Prevalence and correlates of binge eating disorder in a community sample. Compr Psychiatry 48:124–131.  https://doi.org/10.1016/j.comppsych.2006.08.002 CrossRefPubMedGoogle Scholar
  10. 10.
    Hays NP, Roberts SB (2008) Aspects of eating behaviours “disinhibition” and “restraint” are related to weight gain and BMI in women. Obesity (Silver Spring) 16:52–58.  https://doi.org/10.1038/oby.2007.12 CrossRefGoogle Scholar
  11. 11.
    Nevanpera NJ, Hopsu L, Kuosma E, Ukkola O, Uitti J, Laitinen JH (2012) Occupational burnout, eating behaviour, and weight among working women. Am J Clin Nutr 95:934–943.  https://doi.org/10.3945/ajcn.111.014191 CrossRefPubMedGoogle Scholar
  12. 12.
    Buscema M, Grossi E (2008) The semantic connectivity map: an adapting self-organising knowledge discovery method in data bases. Experience in gastro-oesophageal reflux disease. Int J Data Min Bioinform 2:362–404CrossRefPubMedGoogle Scholar
  13. 13.
    Ateco 2007 (2009) Classificazione delle attività economiche. https://www4.istat.it/it/strumenti/definizioni-e-classificazioni/ateco-2007. Accessed 5 Jan 2018
  14. 14.
    Tudor-Locke C, Ainsworth BE, Washington TL, Troiano R (2011) Assigning metabolic equivalent values to the 2002 census occupational classification system. J Phys Act Health 8:581–586CrossRefPubMedGoogle Scholar
  15. 15.
    World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser, 894. WHO, Geneva, pp 1–253Google Scholar
  16. 16.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F, American Heart Association; National Heart, Lung, and Blood Institute (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752.  https://doi.org/10.1161/CIRCULATIONAHA.105.169404 CrossRefPubMedGoogle Scholar
  17. 17.
    Gormally J, Black S, Daston S, Rardin D (1982) The assessment of binge eating severity among obese persons. Addictive Behav 7:47–55CrossRefGoogle Scholar
  18. 18.
    Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571.  https://doi.org/10.1001/archpsyc.1961.01710120031004 CrossRefPubMedGoogle Scholar
  19. 19.
    Karasek R, Brisson C, Kawakami N, Houtman I, Bongers P, Amick B (1998) The Job Content Questionnaire (JCQ): an instrument for internationally comparative assessments of psychosocial job characteristics. J Occup Health Psychol 3:322–355CrossRefPubMedGoogle Scholar
  20. 20.
    Baldasseroni A, Camerino D, Cenni P, Cesana GC, Fattorini E, Ferrario M, Tartaglia R (2001) La valutazione dei fattori psicosociali. Proposta della versione italiana del Job Content Questionnaire di R. A. Karasek. Fogli d’Informazione ISPESL 3:20–32Google Scholar
  21. 21.
    Ulivieri FM, Piodi LP, Grossi E, Rinaudo L, Messina C, Tassi AP, Filopanti M, Tirelli A, Sardanelli F (2018) The role of carboxy-terminal cross-linking telopeptide of type I collagen, dual X-ray absorptiometry bone strain and Romberg test in a new osteoporotic fracture risk evaluation: a proposal from an observational study. PLoS One.  https://doi.org/10.1371/journal.pone.0190477 (Accessed 05 Jan 2018) PubMedPubMedCentralGoogle Scholar
  22. 22.
    Eller-Vainicher C, Zhukouskaya VV, Tolkachev YV, Koritko SS, Cairoli E, Grossi E, Beck-Peccoz P, Chiodini I, Shepelkevich AP (2011) Low bone mineral density and its predictors in type 1 diabetic patients evaluated by the classic statistics and artificial neural network analysis. Diabetes Care 34:2186–2191.  https://doi.org/10.2337/dc11-0764 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hirose H, Takayama T, Hozawa S, Hibi T, Saito I (2011) Prediction of metabolic syndrome using artificial neural network system based on clinical data including insulin resistance index and serum adiponectin. Comput Biol Med 41:1051–1056.  https://doi.org/10.1016/j.compbiomed.2011.09.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Ivanovic D, Kupusinac A, Stokic E, Doroslovacki R, Ivetic D (2016) ANN prediction of metabolic syndrome: a complex puzzle that will be completed. J Med Syst 40:264.  https://doi.org/10.1007/s10916-016-0601-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Valavanis IK, Mougiakakou SG, Grimaldi KA, Nikita KS (2010) A multifactorial analysis of obesity as CVD risk factor: use of neural network based methods in a nutrigenetics context. BMC Bioinform 11:453.  https://doi.org/10.1186/1471-2105-11-453 CrossRefGoogle Scholar
  26. 26.
    Vernay M, Salanave B, de Peretti C, Druet C, Malon A, Deschamps V, Hercberg S, Castetbon K (2013) Metabolic syndrome and socioeconomic status in France: the French Nutrition and Health Survey (ENNS 2006–2007). Int J Public Health 58(6):855–864CrossRefPubMedGoogle Scholar
  27. 27.
    Hudson JI, Lalonde JK, Coit CE, Tsuang MT, McElroy SL, Crow SJ, Bulik CM, Hudson MS, Yanovski JA, Rosenthal NR, Pope HG Jr (2010) Longitudinal study of the diagnosis of components of the metabolic syndrome in individuals with binge-eating disorder. Am J Clin Nutr 91(6):1568–1573.  https://doi.org/10.3945/ajcn.2010.29203 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lasserre AM, Strippoli MF, Glaus J, Gholam-Rezaee M, Vandeleur CL, Castelao E, Marques-Vidal P, Waeber G, Vollenweider P, Preisig M (2017) Prospective associations of depression subtypes with cardio-metabolic risk factors in the general population. Mol Psychiatry 22(7):1026–1034.  https://doi.org/10.1038/mp.2016.178 CrossRefPubMedGoogle Scholar
  29. 29.
    Onat A, Karadeniz Y, Tusun E, Yüksel H, Kaya A (2016) Advances in understanding gender difference in cardiometabolic disease risk. Exp Rev Cardiovasc Therapy 14:513–523.  https://doi.org/10.1586/14779072.2016.1150782 CrossRefGoogle Scholar
  30. 30.
    Regitz-Zagrosek V, Lehmkuhl E, Weickert MO (2006) Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 95:147CrossRefGoogle Scholar
  31. 31.
    Gostynski M, Gutzwiller F, Kuulasmaa K, Döring A, Ferrario M, Grafnetter D, Pajak A, WHO MONICA Project (2004) Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord 28:1082–1090CrossRefPubMedGoogle Scholar
  32. 32.
    Wietlisbach V, Marques-Vidal P, Kuulasmaa K, Karvanen J, Paccaud F, WHO MONICA Project (2013) The relation of body mass index and abdominal adiposity with dyslipidemia in 27 general populations of the WHO MONICA Project. Nutr Metab Cardiovasc Dis 23:432–442.  https://doi.org/10.1016/j.numecd.2011.09.002 CrossRefPubMedGoogle Scholar
  33. 33.
    Loucks EB, Rehkopf DH, Thurston RC, Kawachi I (2007) Socioeconomic disparities in metabolic syndrome differ by gender: evidence from NHANES III. Ann Epidemiol 17:19–26.  https://doi.org/10.1016/j.annepidem.2006.07.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Kivimäki M, Nyberg ST, Fransson EI, Heikkilä K, Alfredsson L, Casini A, Clays E, De Bacquer D, Dragano N, Ferrie JE, Goldberg M, Hamer M, Jokela M, Karasek R, Kittel F, Knutsson A, Koskenvuo M, Nordin M, Oksanen T, Pentti J, Rugulies R, Salo P, Siegrist J, Suominen SB, Theorell T, Vahtera J, Virtanen M, Westerholm PJ, Westerlund H, Zins M, Steptoe A, Singh-Manoux A, Batty GD, IPD-Work Consortium (2013) Associations of job strain and lifestyle risk factors with risk of coronary artery disease: a meta-analysis of individual participant data. CMAJ 185:763–769.  https://doi.org/10.1503/cmaj.121735 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karasek R (1990) Lower health risk with increased job control among white collar workers. J Organ Behav 11:171–185CrossRefGoogle Scholar
  36. 36.
    Gadinger MC, Fischer JE, Schneider S, Terris DD, Krückeberg K, Yamamoto S, Frank G, Kromm W (2010) Gender moderates the health-effects of job strain in managers. Int Arch Occup Environ Health 83:531–541.  https://doi.org/10.1007/s00420-009-0477-7 CrossRefPubMedGoogle Scholar
  37. 37.
    Krause N, Brand RJ, Kaplan GA, Kauhanen J, Malla S, Tuomainen TP, Salonen JT (2007) Occupational physical activity, energy expenditure and 11-year progression of carotid atherosclerosis. Scand J Work Environ Health 33:405–424CrossRefPubMedGoogle Scholar
  38. 38.
    Moe B, Mork PJ, Holtermann A, Nilsen TI (2013) Occupational physical activity, metabolic syndrome and risk of death from all causes and cardiovascular disease in the HUNT 2 cohort study. Occup Environ Med 70:86–90.  https://doi.org/10.1136/oemed-2012-100734 CrossRefPubMedGoogle Scholar
  39. 39.
    Kessler RC, Berglund PA, Chiu WT, Deitz AC, Hudson JI, Shahly V, Aguilar-Gaxiola S, Alonso J, Angermeyer MC, Benjet C, Bruffaerts R, de Girolamo G, de Graaf R, Maria Haro J, Kovess-Masfety V, O’Neill S, Posada-Villa J, Sasu C, Scott K, Viana MC, Xavier M (2013) The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol Psychiatry 73:904–914.  https://doi.org/10.1016/j.biopsych.2012.11.020 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Olguin P, Fuentes M, Gabler G, Guerdjikova AI, Keck PE Jr, McElroy SL (2017) Medical comorbidity of binge eating disorder. Eat Weight Disord 22:13–26.  https://doi.org/10.1007/s40519-016-0313-5 CrossRefPubMedGoogle Scholar
  41. 41.
    Raikkonen K, Matthews KA, Kuller LH (2007) Depressive symptoms and stressful life events predict metabolic syndrome among middle-aged women: a comparison of World Health Organization, Adult Treatment Panel III, and International Diabetes Foundation definitions. Diabetes Care 30:872–877.  https://doi.org/10.2337/dc06-1857 CrossRefPubMedGoogle Scholar
  42. 42.
    Toker S, Shirom A, Melamed S (2008) Depression and the metabolic syndrome: gender-dependent associations. Depress Anxiety 25:661–669.  https://doi.org/10.1002/da.20379 CrossRefPubMedGoogle Scholar
  43. 43.
    Imayama I, Alfano CM, Kong A, Foster-Schubert KE, Bain CE, Xiao L, Duggan C, Wang CY, Campbell KL, Blackburn GL, McTiernan A (2011) Dietary weight loss and exercise interventions effects on quality of life in overweight/obese postmenopausal women: a randomized controlled trial. Int J Behav Nutr Phys Act 8:118.  https://doi.org/10.1186/1479-5868-8-118 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sanne B, Mykletun A, Dahl AA, Moen BE, Tell GS (2005) Testing the Job Demand-Control-Support model with anxiety and depression as outcomes: the Hordaland Health Study. Occup Med (Lond) 55:463–473.  https://doi.org/10.1093/occmed/kqi071 CrossRefGoogle Scholar
  45. 45.
    Onat A (2011) Metabolic syndrome: nature, therapeutic solutions and options. Exp Opin Pharmacother 12:1887–1900.  https://doi.org/10.1517/14656566.2011.585462 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luisella Vigna
    • 1
  • Amelia Brunani
    • 2
  • Agostino Brugnera
    • 3
  • Enzo Grossi
    • 4
  • Angelo Compare
    • 3
  • Amedea S. Tirelli
    • 5
  • Diana M. Conti
    • 1
  • Gianna M. Agnelli
    • 1
  • Lars L. Andersen
    • 6
    • 7
  • Massimo Buscema
    • 8
    • 9
  • Luciano Riboldi
    • 1
  1. 1.Department of Preventive Medicine, Occupational Health Unit, Clinica del Lavoro Luigi DevotoFondazione IRCCS Ca’ Granda, Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Rehabilitation MedicineIRCCS Istituto Auxologico Italiano, S. Giuseppe HospitalVerbaniaItaly
  3. 3.Department of Human and Social SciencesUniversity of BergamoBergamoItaly
  4. 4.Villa Santa Maria FoundationTavernerioItaly
  5. 5.Laboratory of Clinical Chemistry and MicrobiologyFondazione IRCCS Ca’ Granda, Ospedale Maggiore PoliclinicoMilanItaly
  6. 6.National Research Centre for the Working EnvironmentCopenhagenDenmark
  7. 7.Sport Sciences, Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
  8. 8.Semeion Research Centre of Sciences of CommunicationRomeItaly
  9. 9.University of ColoradoDenverUSA

Personalised recommendations