Advertisement

Can body temperature dysregulation explain the co-occurrence between overweight/obesity, sleep impairment, late-night eating, and a sedentary lifestyle?

  • Rhonda F. Brown
  • Einar B. Thorsteinsson
  • Michael Smithson
  • C. Laird Birmingham
  • Hessah Aljarallah
  • Christopher Nolan
Review
Part of the following topical collections:
  1. Sleep and Obesity

Abstract

Purpose

Overweight/obesity, sleep disturbance, night eating, and a sedentary lifestyle are common co-occurring problems. There is a tendency for them to co-occur together more often than they occur alone. In some cases, there is clarity as to the time course and evolution of the phenomena. However, specific mechanism(s) that are proposed to explain a single co-occurrence cannot fully explain the more generalized tendency to develop concurrent symptoms and/or disorders after developing one of the phenomena. Nor is there a clinical theory with any utility in explaining the development of co-occurring symptoms, disorders and behaviour and the mechanism(s) by which they occur. Thus, we propose a specific mechanism—dysregulation of core body temperature (CBT) that interferes with sleep onset—to explain the development of the concurrences.

Methods

A detailed review of the literature related to CBT and the phenomena that can alter CBT or are altered by CBT is provided.

Results

Overweight/obesity, sleep disturbance and certain behaviour (e.g. late-night eating, sedentarism) were linked to elevated CBT, especially an elevated nocturnal CBT. A number of existing therapies including drugs (e.g. antidepressants), behavioural therapies (e.g. sleep restriction therapy) and bright light therapy can also reduce CBT.

Conclusions

An elevation in nocturnal CBT that interferes with sleep onset can parsimoniously explain the development and perpetuation of common co-occurring symptoms, disorders and behaviour including overweight/obesity, sleep disturbance, late-night eating, and sedentarism. Nonetheless, a significant correlation between CBT and the above symptoms, disorders and behaviour does not necessarily imply causation. Thus, statistical and methodological issues of relevance to this enquiry are discussed including the likely presence of autocorrelation.

Level of evidence

Level V, narrative review.

Keywords

Comorbidity Co-occurrence Overweight/obesity Sleep disturbance Core body temperature Late-night eating Sedentarism 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, there is no conflict of interest at all in regards to the submitted publication. That is, no author has a financial or personal relationship with a third party whose interests could be positively or negatively influenced by the article’s content.

Funding

This research paper was not supported by a funding source.

Human and animal participants

This article does not contain any studies with human participants or involving animals performed by any of the authors.

References

  1. 1.
    Feinstein AR (1970) The pre-therapeutic classification of co-morbidity in chronic disease. J Chronic Dis 23(7):455–468. doi: 10.1016/0021-9681(70)90054-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, Miller AM (2008) Meta-analysis of short sleep duration and obesity in children and adults. Sleep 31(5):619–626PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Vorona RD, Winn MP, Babineau TW, Eng BP, Feldman HR, Ware JC (2005) Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch Intern Med Health 165(1):25–30. doi: 10.1001/archinte.165.1.25 CrossRefGoogle Scholar
  4. 4.
    Pearson NJ, Johnson LL, Nahin RL (2006) Insomnia, trouble sleeping, and complementary and alternative medicine: analysis of the 2002 National Health Interview Survey data. Arch Intern Med 166(16):1775–1782. doi: 10.1001/archinte.166.16.1775 PubMedCrossRefGoogle Scholar
  5. 5.
    Dixon JB, Schachter LM, O’Brien PE (2001) Sleep disturbance and obesity: changes following surgically induced weight loss. Arch Intern Med 161(1):102–106. doi: 10.1001/archinte.161.1.102 PubMedCrossRefGoogle Scholar
  6. 6.
    Jansson-Fröjmark M, Lindblom K (2008) A bidirectional relationship between anxiety and depression, and insomnia? A prospective study in the general population. J Psychosom Res 64(4):443–449. doi: 10.1016/j.jpsychores.2007.10.016 PubMedCrossRefGoogle Scholar
  7. 7.
    Degenhardt L, Hall W, Lynskey M (2003) What is comorbidity and why does it occur? In: Teesson M, Proudfoot H (eds) Comorbid mental disorders and substance use disorders: epidemiology, prevention and treatment. National Drug and Alcohol Research Centre, Sydney, pp 10–25Google Scholar
  8. 8.
    Borsboom D, Cramer AOJ, Schmittmann VD, Epskamp S, Waldorp LJ (2011) The small world of psychopathology. PloS One 6(11):e27407. doi: 10.1371/journal.pone.0027407 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cramer AOJ, Waldorp LJ, van der Maas HLJ, Borsboom D (2010) Comorbidity: a network perspective. Behav Brain Sci 33(2–3):137–150. doi: 10.1017/S0140525X09991567 PubMedCrossRefGoogle Scholar
  10. 10.
    Thomsen DK, Mehlsen MY, Christensen S, Zachariae R (2003) Rumination—relationship with negative mood and sleep quality. Personal Individ Differ 34(7):1293–1301. doi: 10.1016/S0191-8869(02)00120-4 CrossRefGoogle Scholar
  11. 11.
    Maser JD, Cloninger CR (1990) Cormorbidity of mood and anxiety disorders. American Psychiatric, Washington, DCGoogle Scholar
  12. 12.
    Thorsteinsson EB, Brown RF (2009) Mediators and moderators of the stressor—fatigue relationship in non-clinical samples. J Psychosom Res 66:21–29. doi: 10.1016/j.jpsychores.2008.06.010 PubMedCrossRefGoogle Scholar
  13. 13.
    Yeh S-SS, Brown RF (2014) Disordered eating partly mediates the relationship between poor sleep quality and high body mass index. Eat Behav 15(2):291–297. doi: 10.1016/j.eatbeh.2014.03.014 PubMedCrossRefGoogle Scholar
  14. 14.
    Waalen J, Buxbaum JN (2011) Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol Ser A Biol Sci Med Sci 66(5):487–492. doi: 10.1093/gerona/glr001 CrossRefGoogle Scholar
  15. 15.
    Adam K (1989) Human body temperature is inversely correlated with body mass. Eur J Appl Physiol 58(5):471–475. doi: 10.1007/BF02330699 CrossRefGoogle Scholar
  16. 16.
    Kim H, Richardson C, Roberts J, Gren L, Lyon JL (1998) Cold hands, warm heart. Lancet 351(9114):1492PubMedCrossRefGoogle Scholar
  17. 17.
    Heikens MJ, Gorbach AM, Eden HS, Savastano DM, Chen KY, Skarulis MC, Yanovski JA (2011) Core body temperature in obesity. Am J Clin Nutr 93 (5):963–967. doi: 10.3945/ajcn.110.006270 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297(5582):811–811. doi: 10.1126/science.1071851 PubMedCrossRefGoogle Scholar
  19. 19.
    Allison KC, Lundgren JD, O’Reardon JP, Geliebter A, Gluck ME, Vinai P, Mitchell JE, Schenck CH, Howell MJ, Crow SJ (2010) Proposed diagnostic criteria for night eating syndrome. Int J Eat Disord 43(3):241–247. doi: 10.1002/eat.20693 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Westerterp-Plantenga MS, Wouters L, Ten Hoor F (1990) Deceleration in cumulative food intake curves, changes in body temperature and diet-induced themogenesis. Physiol Behav 48(6):831–836. doi: 10.1016/0031-9384(90)90235-V PubMedCrossRefGoogle Scholar
  21. 21.
    Murphy PJ, Campbell SS (1997) Nighttime drop in body temperature: a physiological trigger for sleep onset? Sleep 20(7):505–511PubMedCrossRefGoogle Scholar
  22. 22.
    Lack LC, Gradisar M, Van Someren EJW, Wright HR, Lushington K (2008) The relationship between insomnia and body temperatures. Sleep Med Rev 12(4):307–317. doi: 10.1016/j.smrv.2008.02.003 PubMedCrossRefGoogle Scholar
  23. 23.
    BaHammam A, Alrajeh M, Albabtain M, Bahammam S, Sharif M (2010) Circadian pattern of sleep, energy expenditure, and body temperature of young healthy men during the intermittent fasting of Ramadan. Appetite 54(2):426–429. doi: 10.1016/j.appet.2010.01.011 PubMedCrossRefGoogle Scholar
  24. 24.
    Rand CSW, Macgregor AMC, Stunkard AJ (1997) The night eating syndrome in the general population and among postoperative obesity surgery patients. Int J Eat Disord 22(1):65–69. doi: 10.1002/(SICI)1098-108X(199707)22:1<65::AID-EAT8>3.0.CO;2-0 PubMedCrossRefGoogle Scholar
  25. 25.
    Bulik CM, Sullivan PF, Kendler KS (2002) Medical and psychiatric morbidity in obese women with and without binge-eating. Int J Eat Disord 32(1):72–78. doi: 10.1002/eat.10072 PubMedCrossRefGoogle Scholar
  26. 26.
    Crispim CA, Zimberg IZ, dos Reis BG, Diniz RM, Tufik S, de Mello MT (2011) Relationship between food intake and sleep pattern in healthy individuals. J Clin Sleep Med 7(6):659–664. doi: 10.5664/jcsm.1476 PubMedPubMedCentralGoogle Scholar
  27. 27.
    Andersen GS, Stunkard AJ, Sørensen TI, Petersen L, Heitmann BL (2004) Night eating and weight change in middle-aged men and women. Int J Obes 28:1338–1343. doi: 10.1038/sj.ijo.0802731 CrossRefGoogle Scholar
  28. 28.
    de Zwaan M (2001) Binge eating disorder and obesity. Int J Obes 25(S1):S51–S55. doi: 10.1038/sj.ijo.0801699 CrossRefGoogle Scholar
  29. 29.
    Stunkard AJ, Grace WJ, Wolff HG (1955) The night-eating syndrome: a pattern of food intake among certain obese patients. Am J Med 19(1):78–86. doi: 10.1016/0002-9343(55)90276-X PubMedCrossRefGoogle Scholar
  30. 30.
    Redman LM, Martin CK, Williamson DA, Ravussin E (2008) Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes. Physiol Behav 94(5):643–648. doi: 10.1016/j.physbeh.2008.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L (2011) Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3(4):374–379PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Campbell SS, Broughton RJ (1994) Rapid decline in body temperature before sleep: fluffing the physiological pillow? Chronobiol Int 11(2):126–131. doi: 10.3109/07420529409055899 PubMedCrossRefGoogle Scholar
  33. 33.
    Gillberg M, Åkerstedt T (1982) Body temperature and sleep at different times of day. Sleep J Sleep Res Sleep Med 5(4):378–388Google Scholar
  34. 34.
    Dijk D-J, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5):3526–3538PubMedGoogle Scholar
  35. 35.
    Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol 51(5):494–501. doi: 10.1016/0013-4694(81)90226-1 PubMedCrossRefGoogle Scholar
  36. 36.
    Kräuchi K (2002) How is the circadian rhythm of core body temperature regulated? Clin Auton Res 12(3):147–149. doi: 10.1007/s10286-002-0043-9 PubMedCrossRefGoogle Scholar
  37. 37.
    Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Rev 49(3):429–454. doi: 10.1016/j.brainresrev.2005.01.005 PubMedCrossRefGoogle Scholar
  38. 38.
    Monk TH, Reynolds CF, Kupfer DJ, Hoch CC, Carrier J, Houck PR (1997) Differences over the life span in daily life-style regularity. Chronobiol Int 14(3):295–306. doi: 10.3109/07420529709001421 PubMedCrossRefGoogle Scholar
  39. 39.
    Kräuchi K, Wirz-Justice A (1994) Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol Regul Integr Comp Physiol 267(3):R819–R829Google Scholar
  40. 40.
    Monk TH (2010) Enhancing circadian zeitgebers. Sleep 33(4):421–422PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ehlers CL, Frank E, Kupfer DJ (1988) Social zeitgebers and biological rhythms: a unified approach to understanding the etiology of depression. Arch Gen Psychiatry 45(10):948–952. doi: 10.1001/archpsyc.1988.01800340076012 PubMedCrossRefGoogle Scholar
  42. 42.
    Grandin LD, Alloy LB, Abramson LY (2006) The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev 26(6):679–694. doi: 10.1016/j.cpr.2006.07.001 PubMedCrossRefGoogle Scholar
  43. 43.
    Lichstein KL, Riedel BW (1994) Behavioral assessment and treatment of insomnia: a review with an emphasis on clinical application. Behav Ther 25(4):659–688. doi: 10.1016/S0005-7894(05)80203-5 CrossRefGoogle Scholar
  44. 44.
    Van Someren EJW (2004) Thermoregulation as a sleep signalling system. Sleep Med Rev 8(4):327. doi: 10.1016/j.smrv.2004.03.008 PubMedCrossRefGoogle Scholar
  45. 45.
    Kanda K, Tochihara Y, Ohnaka T (1999) Bathing before sleep in the young and in the elderly. Eur J Appl Physiol 80(2):71–75. doi: 10.1007/s004210050560 CrossRefGoogle Scholar
  46. 46.
    Liao W-C (2002) Effects of passive body heating on body temperature and sleep regulation in the elderly: a systematic review. Int J Nurs Stud 39(8):803–810. doi: 10.1016/S0020-7489(02)00023-8 PubMedCrossRefGoogle Scholar
  47. 47.
    Raymann RJEM, Swaab DF, Van Someren EJW (2008) Skin deep: enhanced sleep depth by cutaneous temperature manipulation. Brain 131(2):500–513. doi: 10.1093/brain/awm315 PubMedCrossRefGoogle Scholar
  48. 48.
    Miller CB, Kyle SD, Gordon CJ, Espie CA, Grunstein RR, Mullins AE, Postnova S, Bartlett DJ (2015) Physiological markers of arousal change with psychological treatment for insomnia: a preliminary investigation. PloS One 10(12):e0145317. doi: 10.1371/journal.pone.0145317 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bradbury PA, Fox RH, Goldsmith R, Hampton IFG (1964) The effect of exercise on temperature regulation. J Physiol 171(3):384PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mostardi R, Kubica R, Veicsteinas A, Margaria R (1974) The effect of increased body temperature due to exercise on the heart rate and on the maximal aerobic power. Eur J Appl Physiol 33(3):237–245. doi: 10.1007/BF00421151 CrossRefGoogle Scholar
  51. 51.
    Waterhouse J, Weinert D, Minors D, Atkinson G, Reilly T, Folkard S, Owens D, Macdonald I, Sytnik N, Tucker P (1999) The effect of activity on the waking temperature rhythm in humans. Chronobiol Int 16(3):343–357. doi: 10.3109/07420529909116863 PubMedCrossRefGoogle Scholar
  52. 52.
    Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A (2001) Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry 158(5):704–711. doi: 10.1176/appi.ajp.158.5.704 PubMedCrossRefGoogle Scholar
  53. 53.
    Waterhouse J, Drust B, Weinert D, Edwards B, Gregson W, Atkinson G, Kao S, Aizawa S, Reilly T (2005) The circadian rhythm of core temperature: origin and some implications for exercise performance. Chronobiol Int 22(2):207–225. doi: 10.1081/CBI-200053477 PubMedCrossRefGoogle Scholar
  54. 54.
    Gaskins AJ, Mendiola J, Afeiche M, Jørgensen N, Swan SH, Chavarro JE (2013) Physical activity and television watching in relation to semen quality in young men. Br J Sports Med bjsports-2012-091644. doi: 10.1136/bjsports-2012-091644 Google Scholar
  55. 55.
    Girardier L, Stock MJ (1983) Mammalian thermogenesis: an introduction. In: Girardier L, Stock MJ (eds) Mammalian thermogenesis. Springer Netherlands, Dordrecht, pp 1–7. doi: 10.1007/978-94-011-6032-2_1 CrossRefGoogle Scholar
  56. 56.
    Goran MI, Poehlman ET (1992) Endurance training does not enhance total energy expenditure in healthy elderly persons. Am J Physiol Endocrinol Metab 263(5):E950–E957Google Scholar
  57. 57.
    Volek JS, VanHeest JL, Forsythe CE (2005) Diet and exercise for weight loss. Sports Med 35(1):1–9. doi: 10.2165/00007256-200535010-00001 PubMedCrossRefGoogle Scholar
  58. 58.
    Calfas KJ, Sallis JF, Nichols JF, Sarkin JA, Johnson MF, Caparosa S, Thompson S, Gehrman CA, Alcaraz JE (2000) Project GRAD: two-year outcomes of a randomized controlled physical activity intervention among young adults. Am J Prev Med 18(1):28–37. doi: 10.1016/S0749-3797(99)00117-8 PubMedCrossRefGoogle Scholar
  59. 59.
    Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986) Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 78(6):1568. doi: 10.1172/JCI112749 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ravussin E, Bogardus C (2000) Energy balance and weight regulation: genetics versus environment. Br J Nutr 83(S1):S17–S20. doi: 10.1017/S0007114500000908 PubMedCrossRefGoogle Scholar
  61. 61.
    Redinger RN (2009) Is enhanced energy utilization the answer to prevention of excessive adiposity? J Ky Med Assoc 107(6):211–217PubMedGoogle Scholar
  62. 62.
    Esparza J, Fox C, Harper IT, Bennett PH, Schulz LO, Valencia ME, Ravussin E (2000) Daily energy expenditure in Mexican and USA Pima indians: low physical activity as a possible cause of obesity. Int J Obes Relat Metab Disord 24(1):55PubMedCrossRefGoogle Scholar
  63. 63.
    Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283(5399):212–214. doi: 10.1126/science.283.5399.212 PubMedCrossRefGoogle Scholar
  64. 64.
    Alahmadi M, Hills AP, King NA, Byrne NM (2011) Exercise intensity influences NEAT in overweight and obese adults. Med Sci Sports Exerc. doi: 10.1249/MSS.0b013e3181f7a0cb PubMedGoogle Scholar
  65. 65.
    Hunter GR, McCarthy JP, Bamman MM (2004) Effects of resistance training on older adults. Sports Med 34(5):329–348. doi: 10.2165/00007256-200434050-00005 PubMedCrossRefGoogle Scholar
  66. 66.
    Levine JA (2004) Non-exercise activity thermogenesis (NEAT). Nutr Rev 62(suppl 2):S82–S97. doi: 10.1111/j.1753-4887.2004.tb00094.x PubMedCrossRefGoogle Scholar
  67. 67.
    Kotz CM (2008) Rewired to be thin? When exercise hits the brain. Am J Physiol Regul Integr Comp Physiol 294(2):R288–R289. doi: 10.1152/ajpregu.00855.2007 PubMedCrossRefGoogle Scholar
  68. 68.
    von Loeffelholz C (2014) The role of non-exercise activity thermogenesis in human obesity. MDText.com, South DartmouthGoogle Scholar
  69. 69.
    Bicakova-Rocher A, Gorceix A, Reinberg A, Ashkenazi II, Ticher A (1996) Temperature rhythm of patients with major affective disorders: reduced orcadian period length. Chronobiol Int 13(1):47–57. doi: 10.3109/07420529609040841 PubMedCrossRefGoogle Scholar
  70. 70.
    Nikitopoulou G, Crammer JL (1976) Change in diurnal temperature rhythm in manic-depressive illness. Br Med J 1(6021):1311–1314. doi: 10.1136/bmj.1.6021.1311 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rausch JL, Johnson ME, Corley KM, Hobby HM, Shendarkar N, Fei Y, Ganapathy V, Leibach FH (2003) Depressed patients have higher body temperature: 5-HT transporter long promoter region effects. NeuropsychoBiology 47(3):120–127. doi: 10.1159/000070579 PubMedCrossRefGoogle Scholar
  72. 72.
    Aver DH, Shah SH, Eder DN, Wildschindtz G (1999) Nocturnal sweating and temperature in depression. Acta Psychiatr Scand 100(4):295–301. doi: 10.1111/j.1600-0447.1999.tb10864.x CrossRefGoogle Scholar
  73. 73.
    Daimon K, Yamada N, Tsujimoto T, Takahashi S (1992) Circadian rhythm abnormalities of deep body temperature in depressive disorders. J Affect Disord 26(3):191–198. doi: 10.1016/0165-0327(92)90015-X PubMedCrossRefGoogle Scholar
  74. 74.
    Murray G, Allen NB, Trinder J (2002) Mood and the circadian system: investigation of a circadian component in positive affect. Chronobiol Int 19(6):1151–1169. doi: 10.1081/CBI-120015956 PubMedCrossRefGoogle Scholar
  75. 75.
    Monteleone P, Maj M (2008) The circadian basis of mood disorders: recent developments and treatment implications. Eur Neuropsychopharmacol 18(10):701–711. doi: 10.1016/j.euroneuro.2008.06.007 PubMedCrossRefGoogle Scholar
  76. 76.
    Maes M (2008) The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol Lett 29(3):287–291PubMedGoogle Scholar
  77. 77.
    Kubera M, Lin A-H, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001) Anti-inflammatory effects of antidepressants through suppression of the interferon-γ/interleukin-10 production ratio. J Clin Psychopharmacol 21(2):199–206. doi: 10.1097/00004714-200104000-00012 PubMedCrossRefGoogle Scholar
  78. 78.
    Maes M (2001) The immunoregulatory effects of antidepressants. Hum Psychopharmacol Clin Exp 16(1):95–103. doi: 10.1002/hup.191 CrossRefGoogle Scholar
  79. 79.
    Almeida OP, Flicker L, Yeap B, Alfonso H, McCaul K, Hankey GJ (2012) Aspirin decreases the risk of depression in older men with high plasma homocysteine. Transl Psychiatry 2(8):e151. doi: 10.1038/tp.2012.79 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Davis A, Gilhooley M, Agius M (2010) Using non-steroidal anti-inflammatory drugs in the treatment of depression. Psychiatr Danub 22(Suppl 1):S49–S52PubMedGoogle Scholar
  81. 81.
    Pedersen BK (2000) Exercise and cytokines. Immunol Cell Biol 78(5):532–535. doi: 10.1111/j.1440-1711.2000.t01-11-.x PubMedCrossRefGoogle Scholar
  82. 82.
    Koelsch S, Boehlig A, Hohenadel M, Nitsche I, Bauer K, Sack U (2016) The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood. Sci Rep 6:23008. doi: 10.1038/srep23008 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Brenner IKM, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, Shek PN (1999) Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol 87(2):699–710PubMedGoogle Scholar
  84. 84.
    Rhind SG, Gannon GA, Shephard RJ, Buguet A, Shek PN, Radomski MW (2004) Cytokine induction during exertional hyperthermia is abolished by core temperature clamping: neuroendocrine regulatory mechanisms. Int J Hyperthermia 20(5):503–516. doi: 10.1080/02656730410001670651 PubMedCrossRefGoogle Scholar
  85. 85.
    DuBose DA, Balcius J, Morehouse D (2002) Heat stress and/or endotoxin effects on cytokine expression by human whole blood. Shock 17(3):217–221PubMedCrossRefGoogle Scholar
  86. 86.
    Leon LR (2007) Heat stroke and cytokines. Prog Brain Res 162:481–524. doi: 10.1016/S0079-6123(06)62024-4 PubMedCrossRefGoogle Scholar
  87. 87.
    Duncan WC (1996) Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther 71(3):253–312. doi: 10.1016/S0163-7258(96)00092-7 PubMedCrossRefGoogle Scholar
  88. 88.
    Schwartz PJ, Rosenthal NE, Turner EH, Drake CL, Liberty V, Wehr TA (1997) Seasonal variation in core temperature regulation during sleep in patients with winter seasonal affective disorder. Biol Psychiatry 42(2):122–131. doi: 10.1016/S0006-3223(96)00332-0 PubMedCrossRefGoogle Scholar
  89. 89.
    Yamamotova A, Papezova H, Vevera J (2008) Normalizing effect of bright light therapy on temperature circadian rhythm in patients with eating disorders. Neuroendocrinol Lett 29(1):168–172PubMedGoogle Scholar
  90. 90.
    Clark WG, Clark YL (1980) Changes in body temperature after administration of adrenergic and serotonergic agents and related drugs including antidepressants. Neurosci Biobehav Rev 4(3):281–375. doi: 10.1016/0149-7634(80)90002-0 PubMedCrossRefGoogle Scholar
  91. 91.
    Szuba MP, Guze BH, Baxter LR (1997) Electroconvulsive therapy increases circadian amplitude and lowers core body temperature in depressed subjects. Biol Psychiatry 42(12):1130–1137. doi: 10.1016/S0006-3223(97)00046-2 PubMedCrossRefGoogle Scholar
  92. 92.
    Pigeau R, Naitoh P, Buguet A, McCann C, Baranski J, Taylor M, Thompson M, Mack I (1995) Modafinil, d-amphetamine and placebo during 64 h of sustained mental work. I. Effects on mood, fatigue, cognitive performance and body temperature. J Sleep Res 4(4):212–228. doi: 10.1111/j.1365-2869.1995.tb00172.x PubMedCrossRefGoogle Scholar
  93. 93.
    Banks S, Dinges DF (2007) Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med 3(5):519–528PubMedPubMedCentralGoogle Scholar
  94. 94.
    Renbourn ET (1960) Body temperature and pulse rate in boys and young men prior to sporting contests. A study of emotional hyperthermia: with a review of the literature. J Psychosom Res 4(3):149–175PubMedCrossRefGoogle Scholar
  95. 95.
    Briese E (1995) Emotional hyperthermia and performance in humans. Physiol Behav 58(3):615–618. doi: 10.1016/0031-9384(95)00091-V PubMedCrossRefGoogle Scholar
  96. 96.
    Kelly G (2006) Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev 11(4):278–293PubMedGoogle Scholar
  97. 97.
    Demyttenaere K, De Fruyt J, Stahl SM (2005) The many faces of fatigue in major depressive disorder. Int J Neuropsychopharmacol 8(1):93–105. doi: 10.1017/S1461145704004729 PubMedCrossRefGoogle Scholar
  98. 98.
    Aikens JE, Reinecke MA, Pliskin NH, Fischer JS, Wiebe JS, McCracken LM, Taylor JL (1999) Assessing depressive symptoms in multiple sclerosis: is it necessary to omit items from the original Beck Depression Inventory? J Behav Med 22(2):127–142. doi: 10.1023/A:1018731415172 PubMedCrossRefGoogle Scholar
  99. 99.
    Lu S-H, Dai Y-T (2009) Normal body temperature and the effects of age, sex, ambient temperature and body mass index on normal oral temperature: a prospective, comparative study. Int J Nurs Stud 46(5):661–668. doi: 10.1016/j.ijnurstu.2008.11.006 PubMedCrossRefGoogle Scholar
  100. 100.
    Danel T, Libersa C, Touitou Y (2001) The effect of alcohol consumption on the circadian control of human core body temperature is time dependent. Am J Physiol Regul Integr Comp Physiol 281(1):R52–R55PubMedGoogle Scholar
  101. 101.
    Kwok JSS, Chan TYK (2005) Recurrent heat-related illnesses during antipsychotic treatment. Ann Pharmacother 39(11):1940–1942. doi: 10.1345/aph.1G130 PubMedCrossRefGoogle Scholar
  102. 102.
    Mellerup ET, Widding A, Wildschiødtz G, Rafaelsen OJ (1978) Lithium effect on temperature rhythm in psychiatric patients. Acta Pharmacol Toxicol (Copenh) 42(2):125–129. doi: 10.1111/j.1600-0773.1978.tb02179.x CrossRefGoogle Scholar
  103. 103.
    Molnar GW (1975) Body temperatures during menopausal hot flashes. J Appl Physiol 38(3):499–503PubMedGoogle Scholar
  104. 104.
    Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS (2010) International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. doi: 10.1186/1550-2783-7-5 Google Scholar
  105. 105.
    Hoogwerf BJ, Nuttall FQ (1984) Long-term weight regulation in treated hyperthyroid and hypothyroid subjects. Am J Med 76(6):963–970. doi: 10.1016/0002-9343(84)90842-8 PubMedCrossRefGoogle Scholar
  106. 106.
    Ballesio A, Aquino MRJV, Feige B, Johann AF, Kyle SD, Spiegelhalder K, Lombardo C, Rücker G, Riemann D, Baglioni C (2017) The effectiveness of behavioural and cognitive behavioural therapies for insomnia on depressive and fatigue symptoms: a systematic review and network meta-analysis. Sleep Med Rev. doi: 10.1016/j.smrv.2017.01.006 PubMedGoogle Scholar
  107. 107.
    Wu JQ, Appleman ER, Salazar RD, Ong JC (2015) Cognitive behavioral therapy for insomnia comorbid with psychiatric and medical conditions: a meta-analysis. JAMA Intern Med 175(9):1461–1472. doi: 10.1001/jamainternmed.2015.3006 PubMedCrossRefGoogle Scholar
  108. 108.
    Thorburn AW, Proietto J (2000) Biological determinants of spontaneous physical activity. Obes Rev 1(2):87–94. doi: 10.1046/j.1467-789x.2000.00018.x PubMedCrossRefGoogle Scholar

Copyright information

© Crown Copyright  2017

Authors and Affiliations

  • Rhonda F. Brown
    • 1
  • Einar B. Thorsteinsson
    • 2
  • Michael Smithson
    • 1
  • C. Laird Birmingham
    • 3
  • Hessah Aljarallah
    • 1
  • Christopher Nolan
    • 1
  1. 1.The Australian National UniversityCanberraAustralia
  2. 2.School of Behavioural, Cognitive and Social Sciences PsychologyUniversity of New EnglandArmidaleAustralia
  3. 3.University of British ColumbiaVancouverCanada

Personalised recommendations