Skip to main content

Advertisement

Log in

Abstract

Irisin, a novel myokine produced in response to physical activity, promotes white-to-brown fat transdifferentiation. The name irisin referred to the ancient Greek goddess Iris, the messenger who delivered (bad) news from the gods. In mice, it has been demonstrated that irisin plays a key role in metabolic regulation, energy expenditure and glucose homeostasis. New findings from various studies carried out in both animals and humans suggest that irisin might also have other favorable effects, such as increasing bone cortical mass, preventing hepatic lipid accumulation, and improving cognitive functions, thus mediating many exercise-induced health benefits. However, data on the role and function of irisin in humans have prompted controversy, due mostly to the only recent confirmation of the presence of irisin in humans. Another strong limitation to the understanding of irisin mechanisms of action is the lack of knowledge about its receptor, which until now remains unidentified in humans and in animals. This review presents an overall analysis of the history of irisin, its expression, and its involvement in health, especially in humans.

Level of Evidence Level V, review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from Schumacher MA et al. [17] J Biol Chem “© The American Society for Biochemistry and Molecular Biology”)

Fig. 3

Similar content being viewed by others

References

  1. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. doi:10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25:823–835. doi:10.1007/BF03344046

    Article  CAS  PubMed  Google Scholar 

  3. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. doi:10.1038/nrendo.2012.49

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24:113–119. doi:10.1023/A:1026070911202

    Article  CAS  PubMed  Google Scholar 

  5. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. doi:10.1038/nature10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18:649–659. doi:10.1016/j.cmet.2013.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112:12157–121662. doi:10.1073/pnas.1516622112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22:734–740. doi:10.1016/j.cmet.2015.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. doi:10.1016/S0092-8674(00)81410-5

    Article  CAS  PubMed  Google Scholar 

  10. Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9–E10. doi:10.1038/nature11364

    Article  CAS  PubMed  Google Scholar 

  11. Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, Jung R, Wisløff U, Tjønna AE, Raastad T, Hallén J, Norheim F, Drevon CA, Romacho T, Eckardt K, Eckel J (2013) Evidence against a beneficial effect of irisin in humans. PLoS One 8:e73680. doi:10.1371/journal.pone.0073680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV (2011) Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 39:4220–4234. doi:10.1093/nar/gkr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erickson HP (2013) Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2:289–293. doi:10.4161/adip.26082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA, Erickson HP, Maak S (2015) Irisin—a myth rather than an exercise-inducible myokine. Sci Rep 5:8889. doi:10.1038/srep08889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen MS, Wang CY, Lin SL, Hung KC (2013) Decrease in irisin in patients with chronic kidney disease. PLoS One 8:e64025. doi:10.1371/journal.pone.0064025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. doi:10.1016/j.cmet.2013.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schumacher MA, Chinnam N, Ohashi T, Shah RS, Erickson HP (2013) The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J Biol Chem 288:33738–33744. doi:10.1074/jbc.M113.516641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah R, Ohashi T, Erickson HP, Oas TG (2017) Spontaneous unfolding-refolding of fibronectin type III domains assayed by thiol exchange: thermodynamic stability correlates with rates of unfolding rather than folding. J Biol Chem 292:955–966. doi:10.1074/jbc.M116.760371

    Article  CAS  PubMed  Google Scholar 

  19. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61:1725–1738. doi:10.1016/j.metabol.2012.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, Qi L, Zhang M, Wang X, Cui T, Yang LJ, Tang D (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63:514–525. doi:10.2337/db13-1106

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D, Reeves WH, Yang LJ (2016) Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 311:E530–E541. doi:10.1152/ajpendo.00094.2016

    Article  PubMed  Google Scholar 

  22. Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371. doi:10.1016/j.molmet.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fox J, Rioux BV, Goulet EDB, Johanssen NM, Swift DL, Bouchard DR, Loewen H, Sénéchal M (2017) Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: a meta-analysis. Scand J Med Sci Sports. doi:10.1111/sms.12904

    Article  PubMed  Google Scholar 

  24. Dinas PC, Lahart IM, Timmons JA, Svensson PA, Koutedakis Y, Flouris AD, Metsios GS (2017) Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: a systematic review. Version 2. F1000Res 6:286. doi:10.12688/f1000research.11107.2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miyamoto-Mikami E, Sato K, Kurihara T, Hasegawa N, Fujie S, Fujita S, Sanada K, Hamaoka T, Tabata I, Iemitsu M (2015) Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS One 10:e0120354. doi:10.1371/journal.pone.0120354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsuchiya Y, Ando D, Takamatsu K, Goto K (2015) Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 64:1042–1050. doi:10.1016/j.metabol.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  27. Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS (2015) Irisin in response to exercise in humans with and without metabolic syndrome. J Clin Endocrinol Metab 100:453–457. doi:10.1210/jc.2014-2416

    Article  CAS  Google Scholar 

  28. Daskalopoulou SS, Cooke AB, Gomez YH, Mutter AF, Filippaios A, Mesfum ET, Mantzoros CS (2014) Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 171:343–352. doi:10.1530/EJE-14-0204

    Article  CAS  PubMed  Google Scholar 

  29. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749. doi:10.1111/febs.12619

    Article  CAS  PubMed  Google Scholar 

  30. Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, Srbecky M, Imrich R, Kyselovicova O, Belan V, Jelok I, Wolfrum C, Klimes I, Krssak M, Zemkova E, Gasperikova D, Ukropec J, Ukropcova B (2014) Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 592:1091–1107. doi:10.1113/jphysiol.2013.264655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A, Ruppenthal S, Kaestner L, Meyer T (2013) Irisin and exercise training in humans—results from a randomized controlled training trial. BMC Med 11:235. doi:10.1186/1741-7015-11-235

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crujeiras A, Seoane LM, Casanueva FF, Pardo M (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 8:e60563. doi:10.1371/journal.pone.0060563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98:E769–E778. doi:10.1210/jc.2012-2749

    Article  CAS  PubMed  Google Scholar 

  34. Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ (2013) Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 240:155–162. doi:10.1016/j.neuroscience.2013.02.050

    Article  CAS  PubMed  Google Scholar 

  35. Aydin S, Kuloglu T, Aydin S, Eren MN, Celik A, Yilmaz M, Kalayci M, Sahin I, Gungor O, Gurel A, Ogeturk M, Dabak O (2014) Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides 52:68–73. doi:10.1016/j.peptides.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  36. Aydin S, Aydin S, Kuloglu T, Yilmaz M, Kalayci M, Sahin I, Cicek D (2013) Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides 50:13–18. doi:10.1016/j.peptides.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  37. Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, Albayrak S, Gungor S, Colakoglu N, Ozercan IH (2014) A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61:130–136. doi:10.1016/j.peptides.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  38. Ebert T, Focke D, Petroff D, Wurst U, Richter J, Bachmann A, Lössner U, Kralisch S, Kratzsch J, Beige J, Bast I, Anders M, Blüher M, Stumvoll M, Fasshauer M (2014) Serum levels of the myokine irisin in relation to metabolic and renal function. Eur J Endocrinol 170:501–506. doi:10.1530/EJE-13-1053

    Article  CAS  PubMed  Google Scholar 

  39. Lv J, Pan Y, Li X, Cheng D, Ju H, Tian J, Shi H, Zhang Y (2015) Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm Metab Res 47:591–595. doi:10.1055/s-0035-1547261

    Article  CAS  PubMed  Google Scholar 

  40. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164. doi:10.1074/jbc.M109.053942

    Article  CAS  PubMed  Google Scholar 

  41. Huh JY, Dincer F, Mesfum E, Mantzoros CS (2014) Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond) 38:1538–1544. doi:10.1038/ijo.2014.42

    Article  CAS  Google Scholar 

  42. Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, Mantzoros CS (2017) Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 13:324–337. doi:10.1038/nrendo.2016.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS (2014) Irisin in patients with nonalcoholic fatty liver disease. Metabolism 63:207–217. doi:10.1016/j.metabol.2013.09.013

    Article  CAS  PubMed  Google Scholar 

  44. Hou N, Han F, Sun X (2015) The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol (Oxf) 83:339–343. doi:10.1111/cen.12658

    Article  CAS  Google Scholar 

  45. Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, Tavintharan S, Sum CF, Lim SC (2013) Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complicat 27:365–369. doi:10.1016/j.jdiacomp.2013.03.002

    Article  Google Scholar 

  46. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, Tsoukas MA, Geladari EV, Huh JY, Dincer F, Davis CR, Crowell JA, Mantzoros CS (2013) Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab 98:4899–4907. doi:10.1210/jc.2013-2373

    Article  CAS  PubMed  Google Scholar 

  47. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39:125–130. doi:10.1016/j.peptides.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  48. Pardo M, Crujeiras AB, Amil M, Aguera Z, Jiménez-Murcia S, Baños R, Botella C, de la Torre R, Estivill X, Fagundo AB, Fernández-Real JM, Fernández-García JC, Fruhbeck G, Gómez-Ambrosi J, Rodríguez R, Tinahones FJ, Fernández-Aranda F, Casanueva FF (2014) Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol 2014:857270. doi:10.1155/2014/857270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sanchis-Gomar F, Alis R, Pareja-Galeano H, Sola E, Victor VM, Rocha M, Hernández-Mijares A, Romagnoli M (2014) Circulating irisin levels are not correlated with BMI, age, and other biological parameters in obese and diabetic patients. Endocrine 46:674–677. doi:10.1007/s12020-014-0170-9

    Article  CAS  PubMed  Google Scholar 

  50. Chen J, Gudson A, Huang Y, Qu S (2015) Irisin: a new molecular marker and target in metabolic disorders. Lipids Health Dis 14:2. doi:10.1186/1476-511X-14-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. García-Fontana B, Reyes-García R, Morales-Santana S, Ávila-Rubio V, Muñoz-Garach A, Rozas-Moreno P, Muñoz-Torres M (2016) Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine 52:54–62. doi:10.1007/s12020-015-0758-8

    Article  CAS  PubMed  Google Scholar 

  52. Al-Daghri NM, Alokail MS, Rahman S, Amer OE, Al-Attas OS, Alfawaz H, Tripathi G, Sabico S, Chrousos GP, McTernan PG, Piya MK (2015) Habitual physical activity is associated with circulating irisin in healthy controls but not in subjects with diabetes mellitus type 2. Eur J Clin Invest 45:775–781. doi:10.1111/eci.12468

    Article  CAS  PubMed  Google Scholar 

  53. Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, Kim JG, Lee IK, Park KG (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 100:96–101. doi:10.1016/j.diabres.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  54. Alis R, Sanchis-Gomar F, Pareja-Galeano H, Hernández-Mijares A, Romagnoli M, Víctor VM, Rocha M (2014) Association between irisin and homocysteine in euglycemic and diabetic subjects. Clin Biochem 47:333–335. doi:10.1016/j.clinbiochem.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  55. Khidr EG, Ali SS, Elshafey MM, Fawzy OA (2017) Association of irisin and FNDC5 rs16835198 G > T gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy. An Egyptian pilot study. Gene 626:26–31. doi:10.1016/j.gene.2017.05.010

    Article  CAS  PubMed  Google Scholar 

  56. Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, Perticone F (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 51:705–713. doi:10.1007/s00592-014-0576-0

    Article  CAS  PubMed  Google Scholar 

  57. Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42:987–1000. doi:10.1002/hep.20920

    Article  CAS  PubMed  Google Scholar 

  58. Bugianesi E, Moscatiello S, Ciaravella MF, Marchesini G (2010) Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 16:1941–1951. doi:10.2174/138161210791208875

    Article  CAS  PubMed  Google Scholar 

  59. Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW, Han CK, Zhuang XJ, Lu Y, Li XJ, Yang SY, Li XY (2013) Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 59:557–562. doi:10.1016/j.jhep.2013.04.030

    Article  CAS  PubMed  Google Scholar 

  60. Park MJ, Kim DI, Choi JH, Heo YR, Park SH (2015) New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal 27:1831–1839. doi:10.1016/j.cellsig.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  61. Choi ES, Kim MK, Song MK, Kim JM, Kim ES, Chung WJ, Park KS, Cho KB, Hwang JS, Jang BK (2014) Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS One 9:e110680. doi:10.1371/journal.pone.0110680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petta S, Valenti L, Svegliati-Baroni G, Ruscica M, Pipitone RM, Dongiovanni P, Rychlicki C, Ferri N, Cammà C, Fracanzani AL, Pierantonelli I, Di Marco V, Meroni M, Giordano D, Grimaudo S, Maggioni M, Cabibi D, Fargion S, Craxì A (2017) Fibronectin type III domain-containing protein 5 rs3480 A > G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J Clin Endocrinol Metab. doi:10.1210/jc.2017-00056

    Article  PubMed  Google Scholar 

  63. Kim HK, Jeong YJ, Song IS, Noh YH, Seo KW, Kim M, Han J (2017) Glucocorticoid receptor positively regulates transcription of FNDC5 in the liver. Sci Rep 7:43296. doi:10.1038/srep43296

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tarantino G, Finelli C (2013) Pathogenesis of hepatic steatosis: the link between hypercortisolism and non-alcoholic fatty liver disease. World J Gastroenterol 19:6735–6743. doi:10.3748/wjg.v19.i40.6735

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hwang YC, Jeon WS, Park CY, Youn BS (2016) The ratio of skeletal muscle mass to visceral fat area is a main determinant linking circulating irisin to metabolic phenotype. Cardiovasc Diabetol 15:9. doi:10.1186/s12933-015-0319-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658. doi:10.1161/01.CIR.0000025404.78001.D8

    Article  PubMed  Google Scholar 

  67. Brevetti G, Silvestro A, Schiano V, Chiariello M (2003) Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 108:2093–2098. doi:10.1161/01.CIR.0000095273.92468.D9

    Article  PubMed  Google Scholar 

  68. Shechter M, Issachar A, Marai I, Koren-Morag N, Freinark D, Shahar Y, Shechter A, Feinberg MS (2009) Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol 134:52–58. doi:10.1016/j.ijcard.2008.01.021

    Article  PubMed  Google Scholar 

  69. Aronis KN, Moreno M, Polyzos SA, Moreno-Navarrete JM, Ricart W, Delgado E, de la Hera J, Sahin-Efe A, Chamberland JP, Berman R, Spiro A, Vokonas P, Fernández-Real JM, Mantzoros CS (2015) Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int J Obes (Lond) 39:156–161. doi:10.1038/ijo.2014.101

    Article  CAS  Google Scholar 

  70. Kuloglu T, Aydin S, Eren MN, Yilmaz M, Sahin I, Kalayci M, Sarman E, Kaya N, Yilmaz OF, Turk A, Aydin Y, Yalcin MH, Uras N, Gurel A, Ilhan S, Gul E, Aydin S (2014) Irisin: a potentially candidate marker for myocardial infarction. Peptides 55:85–91. doi:10.1016/j.peptides.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  71. Aydin S, Aydin S, Kobat MA, Kalayci M, Eren MN, Yilmaz M, Kuloglu T, Gul E, Secen O, Alatas OD, Baydas A (2014) Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides 56:141–145. doi:10.1016/j.peptides.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  72. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365:213–221. doi:10.1056/NEJMoa1012592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rana KS, Arif M, Hill EJ, Aldred S, Nagel DA, Nevill A, Randeva HS, Bailey CJ, Bellary S, Brown JE (2014) Plasma irisin levels predict telomere length in healthy adults. Age (Dordr) 36:995–1001. doi:10.1007/s11357-014-9620-9

    Article  CAS  Google Scholar 

  74. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ (2003) White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 23:842–846. doi:10.1161/01.ATV.0000067426.96344.32

    Article  CAS  PubMed  Google Scholar 

  75. Oelmann S, Nauck M, Völzke H, Bahls M, Friedrich N (2016) Circulating irisin concentrations are associated with a favourable lipid profile in the general population. PLoS One 11:e0154319. doi:10.1371/journal.pone.0154319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057. doi:10.1001/jama.1995.03530130055028

    Article  CAS  PubMed  Google Scholar 

  77. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022. doi:10.1001/jama.288.16.2015

    Article  Google Scholar 

  78. Polyzos SA, Kountouras J, Anastasilakis AD, Margouta A, Mantzoros CS (2015) Association between circulating irisin and homocysteine in patients with nonalcoholic fatty liver disease. Endocrine 49:560–562. doi:10.1007/s12020-014-0473-x

    Article  CAS  PubMed  Google Scholar 

  79. Mazur-Bialy AI, Pocheć E, Zarawski M (2017) Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int J Mol Sci 18:E701. doi:10.3390/ijms18040701

    Article  CAS  PubMed  Google Scholar 

  80. Mazur-Bialy AI, Bilski J, Pochec E, Brzozowski T (2017) New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. J Physiol Pharmacol 68:243–251

    CAS  PubMed  Google Scholar 

  81. Shao L, Meng D, Yang F, Song H, Tang D (2017) Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun 487:194–200. doi:10.1016/j.bbrc.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  82. Mazur-Bialy AI (2017) Irisin acts as a regulator of macrophages host defense. Life Sci 176:21–25. doi:10.1016/j.lfs.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  83. Liu S, Du F, Li X, Wang M, Duan R, Zhang J, Wu Y, Zhang Q (2017) Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PLoS One 12:e0175498. doi:10.1371/journal.pone.0175498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G, Brunetti G, Moretti B, Tarantino U, Colucci SC, Reseland JE, Vettor R, Cinti S, Grano M (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811. doi:10.1038/s41598-017-02557-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, Colucci S, Cinti S, Grano M (2014) Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol 2014:902186. doi:10.1155/2014/902186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Belviranli M, Okudan N, Kabak B, Erdoğan M, Karanfilci M (2016) The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed 44:290–296. doi:10.1080/00913847.2016.1196125

    Article  PubMed  Google Scholar 

  87. Samy DM, Ismail CA, Nassra RA (2015) Circulating irisin concentrations in rat models of thyroid dysfunction—effect of exercise. Metabolism 64:804–813. doi:10.1016/j.metabol.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  88. Ruchala M, Zybek A, Szczepanek-Parulska E (2014) Serum irisin levels and thyroid function—newly discovered association. Peptides 60:51–55. doi:10.1016/j.peptides.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  89. Yalcin MM, Akturk M, Tohma Y, Cerit ET, Altinova AE, Arslan E, Yetkin I, Toruner FB (2016) Irisin and myostatin levels in patients with Graves’ disease. Arch Med Res 47:471–475. doi:10.1016/j.arcmed.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  90. Panagiotou G, Pazaitou-Panayiotou K, Paschou SA, Komninou D, Kalogeris N, Vryonidou A, Mantzoros CS (2016) Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 26:1039–1045. doi:10.1089/thy.2016.0098

    Article  CAS  PubMed  Google Scholar 

  91. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003

    Article  CAS  PubMed  Google Scholar 

  92. Eddy SF, Morin P Jr, Storey KB (2005) Cloning and expression of PPAR-gamma and PGC-1alpha from the hibernating ground squirrel, Spermophilus tridecemlineatus. Mol Cell Biochem 269:175–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Buscemi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buscemi, S., Corleo, D., Buscemi, C. et al. Does iris(in) bring bad news or good news?. Eat Weight Disord 23, 431–442 (2018). https://doi.org/10.1007/s40519-017-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40519-017-0431-8

Keywords

Navigation