Does iris(in) bring bad news or good news?

  • Silvio Buscemi
  • Davide Corleo
  • Carola Buscemi
  • Carla Giordano
Review

Abstract

Irisin, a novel myokine produced in response to physical activity, promotes white-to-brown fat transdifferentiation. The name irisin referred to the ancient Greek goddess Iris, the messenger who delivered (bad) news from the gods. In mice, it has been demonstrated that irisin plays a key role in metabolic regulation, energy expenditure and glucose homeostasis. New findings from various studies carried out in both animals and humans suggest that irisin might also have other favorable effects, such as increasing bone cortical mass, preventing hepatic lipid accumulation, and improving cognitive functions, thus mediating many exercise-induced health benefits. However, data on the role and function of irisin in humans have prompted controversy, due mostly to the only recent confirmation of the presence of irisin in humans. Another strong limitation to the understanding of irisin mechanisms of action is the lack of knowledge about its receptor, which until now remains unidentified in humans and in animals. This review presents an overall analysis of the history of irisin, its expression, and its involvement in health, especially in humans.

Level of Evidence Level V, review.

Keywords

Irisin Adipose tissue browning Myokine Exercise Type 2 diabetes Obesity Skeletal muscle 

References

  1. 1.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. doi:10.1016/j.cell.2013.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25:823–835. doi:10.1007/BF03344046 CrossRefPubMedGoogle Scholar
  3. 3.
    Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. doi:10.1038/nrendo.2012.49 CrossRefPubMedGoogle Scholar
  4. 4.
    Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 24:113–119. doi:10.1023/A:1026070911202 CrossRefPubMedGoogle Scholar
  5. 5.
    Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. doi:10.1038/nature10777 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, Lin JD, Greenberg ME, Spiegelman BM (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab 18:649–659. doi:10.1016/j.cmet.2013.09.008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, New MI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci USA 112:12157–121662. doi:10.1073/pnas.1516622112 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22:734–740. doi:10.1016/j.cmet.2015.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. doi:10.1016/S0092-8674(00)81410-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Timmons JA, Baar K, Davidsen PK, Atherton PJ (2012) Is irisin a human exercise gene? Nature 488:E9–E10. doi:10.1038/nature11364 CrossRefPubMedGoogle Scholar
  11. 11.
    Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, Jung R, Wisløff U, Tjønna AE, Raastad T, Hallén J, Norheim F, Drevon CA, Romacho T, Eckardt K, Eckel J (2013) Evidence against a beneficial effect of irisin in humans. PLoS One 8:e73680. doi:10.1371/journal.pone.0073680 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV (2011) Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 39:4220–4234. doi:10.1093/nar/gkr007 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Erickson HP (2013) Irisin and FNDC5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte 2:289–293. doi:10.4161/adip.26082 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L, Lee S, Brenmoehl J, Thomas S, Drevon CA, Erickson HP, Maak S (2015) Irisin—a myth rather than an exercise-inducible myokine. Sci Rep 5:8889. doi:10.1038/srep08889 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wen MS, Wang CY, Lin SL, Hung KC (2013) Decrease in irisin in patients with chronic kidney disease. PLoS One 8:e64025. doi:10.1371/journal.pone.0064025 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309. doi:10.1016/j.cmet.2013.12.017 CrossRefPubMedGoogle Scholar
  17. 17.
    Schumacher MA, Chinnam N, Ohashi T, Shah RS, Erickson HP (2013) The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J Biol Chem 288:33738–33744. doi:10.1074/jbc.M113.516641 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shah R, Ohashi T, Erickson HP, Oas TG (2017) Spontaneous unfolding-refolding of fibronectin type III domains assayed by thiol exchange: thermodynamic stability correlates with rates of unfolding rather than folding. J Biol Chem 292:955–966. doi:10.1074/jbc.M116.760371 CrossRefPubMedGoogle Scholar
  19. 19.
    Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61:1725–1738. doi:10.1016/j.metabol.2012.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, Qi L, Zhang M, Wang X, Cui T, Yang LJ, Tang D (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63:514–525. doi:10.2337/db13-1106 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D, Reeves WH, Yang LJ (2016) Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 311:E530–E541. doi:10.1152/ajpendo.00094.2016 CrossRefPubMedGoogle Scholar
  22. 22.
    Kersten S (2014) Integrated physiology and systems biology of PPARα. Mol Metab 3:354–371. doi:10.1016/j.molmet.2014.02.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fox J, Rioux BV, Goulet EDB, Johanssen NM, Swift DL, Bouchard DR, Loewen H, Sénéchal M (2017) Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: a meta-analysis. Scand J Med Sci Sports. doi:10.1111/sms.12904 Google Scholar
  24. 24.
    Dinas PC, Lahart IM, Timmons JA, Svensson PA, Koutedakis Y, Flouris AD, Metsios GS (2017) Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: a systematic review. Version 2. F1000Res 6:286. doi:10.12688/f1000research.11107.2 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Miyamoto-Mikami E, Sato K, Kurihara T, Hasegawa N, Fujie S, Fujita S, Sanada K, Hamaoka T, Tabata I, Iemitsu M (2015) Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in middle-aged and older adults. PLoS One 10:e0120354. doi:10.1371/journal.pone.0120354 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tsuchiya Y, Ando D, Takamatsu K, Goto K (2015) Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 64:1042–1050. doi:10.1016/j.metabol.2015.05.010 CrossRefPubMedGoogle Scholar
  27. 27.
    Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS (2015) Irisin in response to exercise in humans with and without metabolic syndrome. J Clin Endocrinol Metab 100:453–457. doi:10.1210/jc.2014-2416 CrossRefGoogle Scholar
  28. 28.
    Daskalopoulou SS, Cooke AB, Gomez YH, Mutter AF, Filippaios A, Mesfum ET, Mantzoros CS (2014) Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol 171:343–352. doi:10.1530/EJE-14-0204 CrossRefPubMedGoogle Scholar
  29. 29.
    Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, Gulseth HL, Birkeland KI, Jensen J, Drevon CA (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J 281:739–749. doi:10.1111/febs.12619 CrossRefPubMedGoogle Scholar
  30. 30.
    Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, Srbecky M, Imrich R, Kyselovicova O, Belan V, Jelok I, Wolfrum C, Klimes I, Krssak M, Zemkova E, Gasperikova D, Ukropec J, Ukropcova B (2014) Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 592:1091–1107. doi:10.1113/jphysiol.2013.264655 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A, Ruppenthal S, Kaestner L, Meyer T (2013) Irisin and exercise training in humans—results from a randomized controlled training trial. BMC Med 11:235. doi:10.1186/1741-7015-11-235 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, Belén Crujeiras A, Seoane LM, Casanueva FF, Pardo M (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 8:e60563. doi:10.1371/journal.pone.0060563 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, Ricart W, Fernández-Real JM (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98:E769–E778. doi:10.1210/jc.2012-2749 CrossRefPubMedGoogle Scholar
  34. 34.
    Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ (2013) Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 240:155–162. doi:10.1016/j.neuroscience.2013.02.050 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aydin S, Kuloglu T, Aydin S, Eren MN, Celik A, Yilmaz M, Kalayci M, Sahin I, Gungor O, Gurel A, Ogeturk M, Dabak O (2014) Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle. Peptides 52:68–73. doi:10.1016/j.peptides.2013.11.024 CrossRefPubMedGoogle Scholar
  36. 36.
    Aydin S, Aydin S, Kuloglu T, Yilmaz M, Kalayci M, Sahin I, Cicek D (2013) Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides 50:13–18. doi:10.1016/j.peptides.2013.09.011 CrossRefPubMedGoogle Scholar
  37. 37.
    Aydin S, Kuloglu T, Aydin S, Kalayci M, Yilmaz M, Cakmak T, Albayrak S, Gungor S, Colakoglu N, Ozercan IH (2014) A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61:130–136. doi:10.1016/j.peptides.2014.09.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Ebert T, Focke D, Petroff D, Wurst U, Richter J, Bachmann A, Lössner U, Kralisch S, Kratzsch J, Beige J, Bast I, Anders M, Blüher M, Stumvoll M, Fasshauer M (2014) Serum levels of the myokine irisin in relation to metabolic and renal function. Eur J Endocrinol 170:501–506. doi:10.1530/EJE-13-1053 CrossRefPubMedGoogle Scholar
  39. 39.
    Lv J, Pan Y, Li X, Cheng D, Ju H, Tian J, Shi H, Zhang Y (2015) Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm Metab Res 47:591–595. doi:10.1055/s-0035-1547261 CrossRefPubMedGoogle Scholar
  40. 40.
    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164. doi:10.1074/jbc.M109.053942 CrossRefPubMedGoogle Scholar
  41. 41.
    Huh JY, Dincer F, Mesfum E, Mantzoros CS (2014) Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes (Lond) 38:1538–1544. doi:10.1038/ijo.2014.42 Google Scholar
  42. 42.
    Perakakis N, Triantafyllou GA, Fernández-Real JM, Huh JY, Park KH, Seufert J, Mantzoros CS (2017) Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 13:324–337. doi:10.1038/nrendo.2016.221 CrossRefPubMedGoogle Scholar
  43. 43.
    Polyzos SA, Kountouras J, Anastasilakis AD, Geladari EV, Mantzoros CS (2014) Irisin in patients with nonalcoholic fatty liver disease. Metabolism 63:207–217. doi:10.1016/j.metabol.2013.09.013 CrossRefPubMedGoogle Scholar
  44. 44.
    Hou N, Han F, Sun X (2015) The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin Endocrinol (Oxf) 83:339–343. doi:10.1111/cen.12658 CrossRefGoogle Scholar
  45. 45.
    Liu JJ, Wong MD, Toy WC, Tan CS, Liu S, Ng XW, Tavintharan S, Sum CF, Lim SC (2013) Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complicat 27:365–369. doi:10.1016/j.jdiacomp.2013.03.002 CrossRefPubMedGoogle Scholar
  46. 46.
    Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, Tsoukas MA, Geladari EV, Huh JY, Dincer F, Davis CR, Crowell JA, Mantzoros CS (2013) Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab 98:4899–4907. doi:10.1210/jc.2013-2373 CrossRefPubMedGoogle Scholar
  47. 47.
    Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39:125–130. doi:10.1016/j.peptides.2012.11.014 CrossRefPubMedGoogle Scholar
  48. 48.
    Pardo M, Crujeiras AB, Amil M, Aguera Z, Jiménez-Murcia S, Baños R, Botella C, de la Torre R, Estivill X, Fagundo AB, Fernández-Real JM, Fernández-García JC, Fruhbeck G, Gómez-Ambrosi J, Rodríguez R, Tinahones FJ, Fernández-Aranda F, Casanueva FF (2014) Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol 2014:857270. doi:10.1155/2014/857270 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sanchis-Gomar F, Alis R, Pareja-Galeano H, Sola E, Victor VM, Rocha M, Hernández-Mijares A, Romagnoli M (2014) Circulating irisin levels are not correlated with BMI, age, and other biological parameters in obese and diabetic patients. Endocrine 46:674–677. doi:10.1007/s12020-014-0170-9 CrossRefPubMedGoogle Scholar
  50. 50.
    Chen J, Gudson A, Huang Y, Qu S (2015) Irisin: a new molecular marker and target in metabolic disorders. Lipids Health Dis 14:2. doi:10.1186/1476-511X-14-2 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    García-Fontana B, Reyes-García R, Morales-Santana S, Ávila-Rubio V, Muñoz-Garach A, Rozas-Moreno P, Muñoz-Torres M (2016) Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state? Endocrine 52:54–62. doi:10.1007/s12020-015-0758-8 CrossRefPubMedGoogle Scholar
  52. 52.
    Al-Daghri NM, Alokail MS, Rahman S, Amer OE, Al-Attas OS, Alfawaz H, Tripathi G, Sabico S, Chrousos GP, McTernan PG, Piya MK (2015) Habitual physical activity is associated with circulating irisin in healthy controls but not in subjects with diabetes mellitus type 2. Eur J Clin Invest 45:775–781. doi:10.1111/eci.12468 CrossRefPubMedGoogle Scholar
  53. 53.
    Choi YK, Kim MK, Bae KH, Seo HA, Jeong JY, Lee WK, Kim JG, Lee IK, Park KG (2013) Serum irisin levels in new-onset type 2 diabetes. Diabetes Res Clin Pract 100:96–101. doi:10.1016/j.diabres.2013.01.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Alis R, Sanchis-Gomar F, Pareja-Galeano H, Hernández-Mijares A, Romagnoli M, Víctor VM, Rocha M (2014) Association between irisin and homocysteine in euglycemic and diabetic subjects. Clin Biochem 47:333–335. doi:10.1016/j.clinbiochem.2014.08.017 CrossRefPubMedGoogle Scholar
  55. 55.
    Khidr EG, Ali SS, Elshafey MM, Fawzy OA (2017) Association of irisin and FNDC5 rs16835198 G > T gene polymorphism with type 2 diabetes mellitus and diabetic nephropathy. An Egyptian pilot study. Gene 626:26–31. doi:10.1016/j.gene.2017.05.010 CrossRefPubMedGoogle Scholar
  56. 56.
    Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, Perticone F (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 51:705–713. doi:10.1007/s00592-014-0576-0 CrossRefPubMedGoogle Scholar
  57. 57.
    Bugianesi E, McCullough AJ, Marchesini G (2005) Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology 42:987–1000. doi:10.1002/hep.20920 CrossRefPubMedGoogle Scholar
  58. 58.
    Bugianesi E, Moscatiello S, Ciaravella MF, Marchesini G (2010) Insulin resistance in nonalcoholic fatty liver disease. Curr Pharm Des 16:1941–1951. doi:10.2174/138161210791208875 CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang HJ, Zhang XF, Ma ZM, Pan LL, Chen Z, Han HW, Han CK, Zhuang XJ, Lu Y, Li XJ, Yang SY, Li XY (2013) Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol 59:557–562. doi:10.1016/j.jhep.2013.04.030 CrossRefPubMedGoogle Scholar
  60. 60.
    Park MJ, Kim DI, Choi JH, Heo YR, Park SH (2015) New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal 27:1831–1839. doi:10.1016/j.cellsig.2015.04.010 CrossRefPubMedGoogle Scholar
  61. 61.
    Choi ES, Kim MK, Song MK, Kim JM, Kim ES, Chung WJ, Park KS, Cho KB, Hwang JS, Jang BK (2014) Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS One 9:e110680. doi:10.1371/journal.pone.0110680 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Petta S, Valenti L, Svegliati-Baroni G, Ruscica M, Pipitone RM, Dongiovanni P, Rychlicki C, Ferri N, Cammà C, Fracanzani AL, Pierantonelli I, Di Marco V, Meroni M, Giordano D, Grimaudo S, Maggioni M, Cabibi D, Fargion S, Craxì A (2017) Fibronectin type III domain-containing protein 5 rs3480 A > G polymorphism, irisin, and liver fibrosis in patients with nonalcoholic fatty liver disease. J Clin Endocrinol Metab. doi:10.1210/jc.2017-00056 PubMedGoogle Scholar
  63. 63.
    Kim HK, Jeong YJ, Song IS, Noh YH, Seo KW, Kim M, Han J (2017) Glucocorticoid receptor positively regulates transcription of FNDC5 in the liver. Sci Rep 7:43296. doi:10.1038/srep43296 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tarantino G, Finelli C (2013) Pathogenesis of hepatic steatosis: the link between hypercortisolism and non-alcoholic fatty liver disease. World J Gastroenterol 19:6735–6743. doi:10.3748/wjg.v19.i40.6735 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hwang YC, Jeon WS, Park CY, Youn BS (2016) The ratio of skeletal muscle mass to visceral fat area is a main determinant linking circulating irisin to metabolic phenotype. Cardiovasc Diabetol 15:9. doi:10.1186/s12933-015-0319-8 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658. doi:10.1161/01.CIR.0000025404.78001.D8 CrossRefPubMedGoogle Scholar
  67. 67.
    Brevetti G, Silvestro A, Schiano V, Chiariello M (2003) Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 108:2093–2098. doi:10.1161/01.CIR.0000095273.92468.D9 CrossRefPubMedGoogle Scholar
  68. 68.
    Shechter M, Issachar A, Marai I, Koren-Morag N, Freinark D, Shahar Y, Shechter A, Feinberg MS (2009) Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol 134:52–58. doi:10.1016/j.ijcard.2008.01.021 CrossRefPubMedGoogle Scholar
  69. 69.
    Aronis KN, Moreno M, Polyzos SA, Moreno-Navarrete JM, Ricart W, Delgado E, de la Hera J, Sahin-Efe A, Chamberland JP, Berman R, Spiro A, Vokonas P, Fernández-Real JM, Mantzoros CS (2015) Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int J Obes (Lond) 39:156–161. doi:10.1038/ijo.2014.101 CrossRefGoogle Scholar
  70. 70.
    Kuloglu T, Aydin S, Eren MN, Yilmaz M, Sahin I, Kalayci M, Sarman E, Kaya N, Yilmaz OF, Turk A, Aydin Y, Yalcin MH, Uras N, Gurel A, Ilhan S, Gul E, Aydin S (2014) Irisin: a potentially candidate marker for myocardial infarction. Peptides 55:85–91. doi:10.1016/j.peptides.2014.02.008 CrossRefPubMedGoogle Scholar
  71. 71.
    Aydin S, Aydin S, Kobat MA, Kalayci M, Eren MN, Yilmaz M, Kuloglu T, Gul E, Secen O, Alatas OD, Baydas A (2014) Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides 56:141–145. doi:10.1016/j.peptides.2014.04.002 CrossRefPubMedGoogle Scholar
  72. 72.
    Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB Sr (2011) Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med 365:213–221. doi:10.1056/NEJMoa1012592 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rana KS, Arif M, Hill EJ, Aldred S, Nagel DA, Nevill A, Randeva HS, Bailey CJ, Bellary S, Brown JE (2014) Plasma irisin levels predict telomere length in healthy adults. Age (Dordr) 36:995–1001. doi:10.1007/s11357-014-9620-9 CrossRefGoogle Scholar
  74. 74.
    Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ (2003) White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 23:842–846. doi:10.1161/01.ATV.0000067426.96344.32 CrossRefPubMedGoogle Scholar
  75. 75.
    Oelmann S, Nauck M, Völzke H, Bahls M, Friedrich N (2016) Circulating irisin concentrations are associated with a favourable lipid profile in the general population. PLoS One 11:e0154319. doi:10.1371/journal.pone.0154319 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057. doi:10.1001/jama.1995.03530130055028 CrossRefPubMedGoogle Scholar
  77. 77.
    Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022. doi:10.1001/jama.288.16.2015 CrossRefGoogle Scholar
  78. 78.
    Polyzos SA, Kountouras J, Anastasilakis AD, Margouta A, Mantzoros CS (2015) Association between circulating irisin and homocysteine in patients with nonalcoholic fatty liver disease. Endocrine 49:560–562. doi:10.1007/s12020-014-0473-x CrossRefPubMedGoogle Scholar
  79. 79.
    Mazur-Bialy AI, Pocheć E, Zarawski M (2017) Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int J Mol Sci 18:E701. doi:10.3390/ijms18040701 CrossRefPubMedGoogle Scholar
  80. 80.
    Mazur-Bialy AI, Bilski J, Pochec E, Brzozowski T (2017) New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. J Physiol Pharmacol 68:243–251PubMedGoogle Scholar
  81. 81.
    Shao L, Meng D, Yang F, Song H, Tang D (2017) Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun 487:194–200. doi:10.1016/j.bbrc.2017.04.020 CrossRefPubMedGoogle Scholar
  82. 82.
    Mazur-Bialy AI (2017) Irisin acts as a regulator of macrophages host defense. Life Sci 176:21–25. doi:10.1016/j.lfs.2017.03.011 CrossRefPubMedGoogle Scholar
  83. 83.
    Liu S, Du F, Li X, Wang M, Duan R, Zhang J, Wu Y, Zhang Q (2017) Effects and underlying mechanisms of irisin on the proliferation and apoptosis of pancreatic β cells. PLoS One 12:e0175498. doi:10.1371/journal.pone.0175498 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, Notarnicola A, Severi I, Passeri G, Mori G, Brunetti G, Moretti B, Tarantino U, Colucci SC, Reseland JE, Vettor R, Cinti S, Grano M (2017) Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep 7:2811. doi:10.1038/s41598-017-02557-8 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Colaianni G, Cuscito C, Mongelli T, Oranger A, Mori G, Brunetti G, Colucci S, Cinti S, Grano M (2014) Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol 2014:902186. doi:10.1155/2014/902186 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Belviranli M, Okudan N, Kabak B, Erdoğan M, Karanfilci M (2016) The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed 44:290–296. doi:10.1080/00913847.2016.1196125 CrossRefPubMedGoogle Scholar
  87. 87.
    Samy DM, Ismail CA, Nassra RA (2015) Circulating irisin concentrations in rat models of thyroid dysfunction—effect of exercise. Metabolism 64:804–813. doi:10.1016/j.metabol.2015.01.001 CrossRefPubMedGoogle Scholar
  88. 88.
    Ruchala M, Zybek A, Szczepanek-Parulska E (2014) Serum irisin levels and thyroid function—newly discovered association. Peptides 60:51–55. doi:10.1016/j.peptides.2014.07.021 CrossRefPubMedGoogle Scholar
  89. 89.
    Yalcin MM, Akturk M, Tohma Y, Cerit ET, Altinova AE, Arslan E, Yetkin I, Toruner FB (2016) Irisin and myostatin levels in patients with Graves’ disease. Arch Med Res 47:471–475. doi:10.1016/j.arcmed.2016.11.002 CrossRefPubMedGoogle Scholar
  90. 90.
    Panagiotou G, Pazaitou-Panayiotou K, Paschou SA, Komninou D, Kalogeris N, Vryonidou A, Mantzoros CS (2016) Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 26:1039–1045. doi:10.1089/thy.2016.0098 CrossRefPubMedGoogle Scholar
  91. 91.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. doi:10.1152/physrev.00015.2003 CrossRefPubMedGoogle Scholar
  92. 92.
    Eddy SF, Morin P Jr, Storey KB (2005) Cloning and expression of PPAR-gamma and PGC-1alpha from the hibernating ground squirrel, Spermophilus tridecemlineatus. Mol Cell Biochem 269:175–182CrossRefPubMedGoogle Scholar

Copyright information

© European Union  2017

Authors and Affiliations

  1. 1.Dipartimento Biomedico di Medicina Interna e Specialistica (DIBIMIS)University of PalermoPalermoItaly
  2. 2.Unit of Malattie Endocrine, del Ricambio e della NutrizioneAOU Policlinico “P. Giaccone”PalermoItaly

Personalised recommendations