Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Recent Advancements in Torrefaction of Solid Biomass

  • 185 Accesses

  • 3 Citations

Abstract

Purpose of Review

The study focuses on the recent advancements on the torrefaction of solid biomass feedstock. A literature review has been conducted and the most important findings of selected studies which have been published the last 5 years are presented.

Recent Findings

According to the published research, solid biomass torrefaction gains significant interest with more than 500 studies since 2002. Based on the existing literature, a focus on the torrefaction woody biomass is observed. However, investigation of torrefaction of herbaceous and other types of biomass such as aquatic is increasing. The integration of pelletization with torrefaction is also widely investigated. Finally, significant effort is given for the development, scaling up, and introduction to market of various torrefaction technologies.

Summary

Future research should address the improvement and commercialization of existing torrefaction technologies. Integrated torrefaction and pelletization shall be further investigated especially using non-woody biomass feedstock.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Batitzirai B, Mignot APR, Schakel WB, Junginger HM, Faaij APC. Biomass torrefaction technology: techno-economic status and future prospects. Energy. 2013;62:196–214. https://doi.org/10.1016/j.energy.2013.09.035.

  2. 2.

    Christoforou EA, Fokaides PA. Life cycle assessment (LCA) of olive husk torrefaction. Renew Energy. 2016;90:257–66. https://doi.org/10.1016/j.renene.2016.01.022.

  3. 3.

    Klemm M, Schmersahl R, Kirsten C, Biofuels WN. Upgraded new solids. In: Kaltschmitt M, Themelis NJ, Bronicki LY, Söder L, Vega LA, editors. Renewable energy systems. New York: Springer reference; 2013. p. 138–59.

  4. 4.

    Rousset P, Fernandes K, Vale A, Macedo L, Benoist A. Change in particle size distribution of torrefied biomass during cold fluidization. Energy. 2013;51:71–7. https://doi.org/10.1016/j.energy.2013.01.030.

  5. 5.

    Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006;31:3458–70. https://doi.org/10.1016/j.energy.2006.03.008.

  6. 6.

    Peduzzi E, Boissonnet G, Haarlemmer G, Dupont C, Marechal F. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy. 2014;70:58–67. https://doi.org/10.1016/j.energy.2014.03.086.

  7. 7.

    Bergman PCA. Combined torrefaction and pelletisation—the TOP process. Report ECN-C-05-073, ECN: The Netherlands; 2005. http://www.ecn.nl/docs/library/report/2005/c05073.pdf. Accessed 10 Mar 2018.

  8. 8.

    Thrän D, Witt J, Schaubach K, Kiel J, Carbo M, Maier J, et al. Moving torrefaction towards market introduction—technical improvements and economic-environmental assessment along the overall torrefaction supply chain through the SECTOR project. Biomass Bioenergy. 2016;89:184–200. https://doi.org/10.1016/j.biombioe.2016.03.004.

  9. 9.

    Correia R, Gonçalves M, Nobre C, Mendes B. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour Technol. 2017;223:210–8. https://doi.org/10.1016/j.biortech.2016.10.046.

  10. 10.

    Joshi Y, de Vries H, Woudstra T, de Jong W. Torrefaction: unit operation modelling and process simulation. Appl Therm Eng. 2015;74:83–8. https://doi.org/10.1016/j.applthermaleng.2013.12.059.

  11. 11.

    Doassans-Carrère N, Muller S, Mitzkat M. REVE—a new industrial technology for biomass torrefaction: pilot studies. Fuel Process Technology. 2014;126:155–62. https://doi.org/10.1016/j.fuproc.2014.04.026.

  12. 12.

    Stelte W, Nielsen NPK, Hansen HO, Dahl J, Leib S, Sanadi AR. Reprint of: pelletizing properties of torrefied wheat straw. Biomass Bioenergy. 2013;53:105–12. https://doi.org/10.1016/j.biombioe.2013.03.012.

  13. 13.

    Pimchuai A, Dutta A, Basu P. Torrefaction of agricultural residue to enhance combustible properties. Energy Fuel J. 2010;24(9):4638–45. https://doi.org/10.1021/ef901168f.

  14. 14.

    Bridgeman TG, Jones JM, Shield I, Williams PT. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuels. 2008;87:844–56. https://doi.org/10.1016/j.fuel.2007.05.041.

  15. 15.

    Sadaka S, Negi S. Improvements of biomass physical and thermochemical characteristics via torrefaction process. Environ Prog Sustain Energy. 2009;28(3):427–34. https://doi.org/10.1002/ep.10392.

  16. 16.

    Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy. 2011;35:3748–62. https://doi.org/10.1016/j.biombioe.2011.06.023.

  17. 17.

    Chew JJ, Doshi V. Recent advances in biomass pretreatment—torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15:4212–22. https://doi.org/10.1016/j.rser.2011.09.017.

  18. 18.

    • Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew SustainEnergy Rev. 2015;44:847–66. https://doi.org/10.1016/j.rser.2014.12.039. The study focuses on the pelletisation of torrefied biomass and reviews available technical solutions.

  19. 19.

    Keipi T, Tolvanen H, Kokko L, Raiko R. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy. 2014;66:232–9. https://doi.org/10.1016/j.biombioe.2014.02.015.

  20. 20.

    Wróbel M, Hamerska J, Jewiarz M, Mudryk K, Marzena Niemczyk M. Influence of parameters of the torrefaction process on the selected parameters of torrefied woody biomass. In: Mudryk K, Werle S, editors. Renewable energy sources: engineering, technology, innovation. Springer: Springer Proceedings in Energy; 2018. https://doi.org/10.1007/978-3-319-72371-6_68.

  21. 21.

    • Rodrigues A, Loureiro L, Nunes LJR. Torrefaction of woody biomasses from poplar SRC and Portuguese roundwood: properties of torrefied products. Biomass Bioenergy. 2018;107:55–65. https://doi.org/10.1016/j.biombioe.2017.11.005. A comprehensive study for woody biomass torrefaction where 17 different types of woody biomass were processed.

  22. 22.

    Li S-X, Zou J-Y, Li M-F, Wu X-F, Bian J, Xue Z-M. Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction. Energy. 2017;124:321–9. https://doi.org/10.1016/j.energy.2017.02.079.

  23. 23.

    Juan F, Pérez JF, Pelaez-Samaniego MR, Garcia-Perez M. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorisation. 2017; https://doi.org/10.1007/s12649-017-0164-y.

  24. 24.

    Ohliger A, Förster M, Kneer R. Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel. 2013;104:607–13. https://doi.org/10.1016/j.fuel.2012.06.112.

  25. 25.

    Yan W, Perez S, Sheng K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization. Fuel. 2017;196:473–80. https://doi.org/10.1016/j.fuel.2017.02.015.

  26. 26.

    Gogoi D, Bordoloi N, Goswami R, Narzari R, Saikia R, Sut D, et al. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: an agro-processing wastes. Bioresour Technol. 2017;242:36–44. https://doi.org/10.1016/j.biortech.2017.03.169.

  27. 27.

    Li M-F, Li X, Bian J, Chen C-Z, Yu Y-T, Sun R-C. Effect of temperature and holding time on bamboo torrefaction. Biomass Bioenergy. 2015;83:366–72. https://doi.org/10.1016/j.biombioe.2015.10.016.

  28. 28.

    Yue Y, Singh H, Singh B, Mani S. Torrefaction of sorghum biomass to improve fuel properties. Bioresour Technol. 2017;232:372–9. https://doi.org/10.1016/j.biortech.2017.02.060.

  29. 29.

    Kihedu J. Torrefaction and combustion of ligno-cellulosic biomass. Energy Procedia. 2015;75:162–7. https://doi.org/10.1016/jegypro201507.273.

  30. 30.

    Toscano G, Pizzi A, Pedretti E, Rossini G, Ciceri G, et al. Torrefaction of tomato industry residues. Fuels. 2015;143:89–97. https://doi.org/10.1016/j.fuel.2014.11.039.

  31. 31.

    Benavente V, Fullana A. Torrefaction of olive mill waste. Biomass Bioenergy. 2015;73:186–94. https://doi.org/10.1016/j.biombioe.2014.12.020.

  32. 32.

    • Li S-X, Chen C-Z, Li M-F, Xiao X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource Technol. 2018;249:348–53. https://doi.org/10.1016/j.biortech.2017.10.026. Carbon dioxide is used as the medium during torrefaction process.

  33. 33.

    Sellappah V, Uemura Y, Hassan S, Sulaiman MH, Lam MK. Torrefaction of empty fruit bunch in the presence of combustion gas. Procedia Eng. 2016;148:750–7. https://doi.org/10.1016/j.proeng.2016.06.608.

  34. 34.

    Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel. 2013;103:156–60. https://doi.org/10.1016/j.fuel.2011.11.018.

  35. 35.

    Rousset P, Macedo L, Commandré JM, Moreira A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. J Anal Appl Pyrolysis. 2012;96:86–91. https://doi.org/10.1016/j.jaap.2012.03.009.

  36. 36.

    Chen W-H, Lu K-M, Lee W-J, Liu S-H, Lin T-C. Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy. 2014;114:104–13. https://doi.org/10.1016/j.apenergy.2013.09.045.

  37. 37.

    Lu KM, Lee WJ, Chen WH, Liu SH, Lin TC. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour Technol. 2012;123:98–105. https://doi.org/10.1016/j.biortech.2012.07.096.

  38. 38.

    Wang C, Peng J, Li H, Bi XT, Legros R, Lim CJ, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–25. https://doi.org/10.1016/j.biortech.2012.09.092.

  39. 39.

    Nunes LJR, Matias JCO, Catalão JPS. Mixed biomass pellets for thermal energy production: a review of combustion models. Appl Energy. 2014;127:135–40. https://doi.org/10.1016/j.apenergy.2014.04.042.

  40. 40.

    Cao L, Yuan X, Li H, Li C, Xiao Z, Jiang L, et al. Complementary effects of torrefaction and co-pelletization: energy consumption and characteristics of pellets. Bioresour Technol. 2015;185:254–62. https://doi.org/10.1016/j.biortech.2015.02.045.

  41. 41.

    Araújo S, Boas MAV, Neiva DM, Carneiro AC, Vital B, Breguez M, et al. Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass Bioenergy. 2016;90:181–6. https://doi.org/10.1016/j.biombioe.2016.04.007.

  42. 42.

    Pirraglia A, Gonzalez R, Saloni D, Denig J. Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US. Energy Convers Manag. 2013;66:153–64. https://doi.org/10.1016/j.enconman.2012.09.024.

  43. 43.

    Mobini M, Meyer J, Trippe F, Sowlati T, Fröhling M, Schultmann F. Assessing the integration of torrefaction into wood pellet production. J Clean Prod. 2014;78:216–25. https://doi.org/10.1016/j.jclepro.2014.04.071.

  44. 44.

    Li Y, Tittmann P, Parker N, Jenkins B. Economic impact of combined torrefaction and pelletization processes on forestry biomass supply. GCB Bioenergy. 2017;9:681–93. https://doi.org/10.1111/gcbb.12375.

  45. 45.

    Xu F, Linnebur K, Wang D. Torrefaction of conservation reserve program biomass: a techno-economic evaluation. Ind Crop Prod. 2014;61:382–7. https://doi.org/10.1016/j.indcrop.2014.07.030.

  46. 46.

    Bazargan A, Rough SL, McKay G. Compaction of palm kernel shell biochars for application as solid fuel. Biomass Bioenergy. 2014;70:489–97. https://doi.org/10.1016/j.biombioe.2014.08.015.

  47. 47.

    Peng J, Bi XT, Lim CJ, Peng H, Kim CS, Jia D, et al. Sawdust as an effective binder for making torrefied pellets. Appl Energy. 2015;157:491–8. https://doi.org/10.1016/j.apenergy.2015.06.024.

  48. 48.

    Hu Q, Shao J, Yang H, Yao D, Wang X, Chen H. Effects of binders on the properties of bio-char pellets. Appl Energy. 2015;157:508–16. https://doi.org/10.1016/j.apenergy.2015.05.019.

  49. 49.

    Bai X, Wang G, Gong C, Yu Y, Liu W, Wang D. Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol. 2017;233:373–81. https://doi.org/10.1016/j.biortech.2017.02.091.

  50. 50.

    •• Cremers M, Koppejan J, Middelkamp J, Witkamp J, Sokhansanj S, Melin S, et al. Status overview of torrefaction technologies—a review of the commercialisation status of biomass torrefaction. IEA Bioenergy; 2015. http://www.ieabcc.nl/publications/IEA_Bioenergy_T32_Torrefaction_update_2015b.pdf. Accessed 13 Mar 2018. A comprehensive study which provides significant information regarding the current status of torrefaction technologies.

Download references

Author information

Correspondence to Elias A. Christoforou.

Ethics declarations

Conflict of Interest

Elias A. Christoforou declares no conflicts of interest.

Paris A. Fokaides is a section editor for Current Sustainable/Renewable Energy Reports.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomass and Biofuels

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christoforou, E.A., Fokaides, P.A. Recent Advancements in Torrefaction of Solid Biomass. Curr Sustainable Renewable Energy Rep 5, 163–171 (2018). https://doi.org/10.1007/s40518-018-0110-z

Download citation

Keywords

  • Solid biomass
  • Torrefaction
  • Biofuels