Advertisement

Effects of Composition and Post Heat Treatment on Shape Memory Characteristics and Mechanical Properties for Laser Direct Deposited Nitinol

  • Jeongwoo Lee
  • Yung C. ShinEmail author
Article
  • 35 Downloads

Abstract

Nitinol structures were synthesized in a fully dense form using a laser direct deposition method. The pure elemental metal powders of nickel and titanium were used and powder ratios were controlled to arrive at the prescribed final chemical compositions of Nitinol. The transformation temperatures of synthesized Nitinol samples with different chemical composition and post heat treatment conditions were systematically analyzed and compared with those of conventional Nitinol. Compared to Nitinol parts produced by other techniques, the laser engineered net shaping (LENS) created the least amount of secondary phase, indicating the possibility of high corrosion resistance. Two step post processing of solution heat treatment and aging heat treatment was carried out to improve the homogeneity of the microstructure and to investigate its effects on phase transformation temperatures. The resultant phase transformation temperatures could be controlled by the heat treatment parameters. Compression test results showed mechanical properties of synthesized Nitinol samples are largely affected by its post heat treatment history while the effect of initial chemical composition was negligible.

Keywords

Laser direct deposition Nitinol Shape memory alloy Post heat treatment Bio material 

Notes

Acknowledgements

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant No. CMMI-1233783).

References

  1. 1.
    Duerig, T., Pelton, A., Stockel, D.: An overview of nitinol medical applications. Mater. Sci. Eng. A. 273-275, 149–160 (1999)CrossRefGoogle Scholar
  2. 2.
    Chen, M., Yang, X., Hu, R., Cui, Z., Man, H.: Bioactive NiTi shape memory alloy used as bone bonding implants. Mater. Sci. Eng. C. 24(4), 497–502 (2004)CrossRefGoogle Scholar
  3. 3.
    Bernard, S., Balla, V., Davies, N., Bose, S., Bandyopadhyay, A.: Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 7(4), 1902–1912 (2011)CrossRefGoogle Scholar
  4. 4.
    Michiardi, A., Aparicio, C., Planell, J., Gil, F.: Electrochemical behaviour of oxidized NiTi shape memory alloys for biomedical applications. Surf. Coat. Technol. 201(14), 6484–6488 (2007)CrossRefGoogle Scholar
  5. 5.
    Shabalovskaya, S., Anderegg, J., Van Humbeeck, J.: Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 4(3), 447–467 (2008)CrossRefGoogle Scholar
  6. 6.
    Wu, M.: H.: fabrication of Nitinol materials and components. Mater. Sci. Forum. 394, 285–292 (2002)CrossRefGoogle Scholar
  7. 7.
    Bram, M., Bitzer, M., Buchkremer, H., Stover, D.: Reproducibility study of NiTi parts made by metal injection molding. J. Mater. Eng. Perform. 21(12), 2701–2712 (2012)CrossRefGoogle Scholar
  8. 8.
    Mentz, J., Bram, M., Buchkremer, H., Stover, D.: Improvement of mechanical properties of powder metallurgical NiTi shape memory alloys. Adv. Eng. Mater. 8(4), 247–252 (2006)CrossRefGoogle Scholar
  9. 9.
    Ismail, M., Goodall, R., Davies, H., Todd, I.: Porous NiTi alloy by metal injection moulding/sintering of elemental powders: effect of sintering temperature. Mater. Lett. 70, 142–145 (2012)CrossRefGoogle Scholar
  10. 10.
    Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H., Stover, D.: Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng. A. 337(1-2), 254–263 (2002)CrossRefGoogle Scholar
  11. 11.
    Bansiddhi, A., Sargeant, T., Stupp, S., Dunand, D.: Porous NiTi for bone implants: a review. Acta Biomater. 4(4), 773–782 (2008)CrossRefGoogle Scholar
  12. 12.
    Malukhin, K., Ehmann, K.: Material characterization of NiTi based memory alloys fabricated by the laser direct metal deposition process. J. Manuf. Sci. Eng. 128(3), 691–696 (2006)CrossRefGoogle Scholar
  13. 13.
    Halani, P., Shin, Y.: In situ synthesis and characterization of shape memory alloy Nitinol by laser direct deposition. Metal. Mater. Trans. A. 43A, 650–657 (2012)CrossRefGoogle Scholar
  14. 14.
    Khademzadeh, S., Parvin, N., Bariani, P.: Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures. Int. J. Precis. Eng. Manuf. 16(11), 2333–2338 (2015)CrossRefGoogle Scholar
  15. 15.
    Shishkovsky, I., Yadroitsev, I., Smurov, I.: Direct selective laser melting of nitinol powder. Phys. Procedia. 39, 447–454 (2012)CrossRefGoogle Scholar
  16. 16.
    Bernard, S., Balla, V., Bose, S., Bandyopadhyay, A.: Rotating bending fatigue response of laser processed porous NiTi alloy. Mater. Sci. Eng. C. 31(4), 815–820 (2011)CrossRefGoogle Scholar
  17. 17.
    Bernard, S., Balla, V., Bose, S., Bandyopadhyay, A.: Compression fatigue behavior of laser processed porous NiTi alloy. J. Mech. Behav. Biomed. 13, 62–68 (2012)CrossRefGoogle Scholar
  18. 18.
    Halani, P., Kaya, I., Shin, Y., Karaca, H.: Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A. 559, 836–843 (2013)CrossRefGoogle Scholar
  19. 19.
    Hamilton, R., Palmer, T., Bimber, B.: Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds. Scr. Mater. 101, 56–59 (2015)CrossRefGoogle Scholar
  20. 20.
    Shiva, S., Palani, I., Mishra, S., Paul, C., Kukreja, L.: Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt. Laser Technol. 69, 44–51 (2015)CrossRefGoogle Scholar
  21. 21.
    Hamilton, R., Bimber, B., Andani, M., Elahinia, M.: Multi-scale shape memory effect recovery in NiTi alloys additive manufactured by selective laser melting and laser directed energy deposition. J. Mater. Process. Technol. 250, 55–64 (2017)CrossRefGoogle Scholar
  22. 22.
    Pelton, A., DiCello, J., Miyazaki, S.: Optimisation of processing and properties of medical grade Nitinol wire. Minim. Invasiv. Ther. 9(2), 107–118 (2000)CrossRefGoogle Scholar
  23. 23.
    Sun, B., Fu, M.W., Lin, J., Ning, Y.Q.: Effect of low-temperature aging treatment on thermally-and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 131, 49–59 (2017)CrossRefGoogle Scholar
  24. 24.
    Fan, Q.C., Zhang, Y.H., Wang, Y.Y., Sun, M.Y., Meng, Y.T., Huang, S.K., Wen, Y.H.: Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater. Sci. Eng. A. 700, 269–280 (2017)CrossRefGoogle Scholar
  25. 25.
    Adharapurapu, R.R., Vecchio, K.S.: Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8 Ni. Mater. Sci. Eng. A. 693, 150–163 (2017)Google Scholar
  26. 26.
    Saedi, S., Turabi, A., Andani, M., Haberland, C., Karaca, H., Elahinia, M.: The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J. Alloys Compd. 677, 204–210 (2016)CrossRefGoogle Scholar
  27. 27.
    Ahadi, A., Sun, Q.: Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-effects of grain size. Appl. Phys. Lett. 103(2), 021902 (2013)CrossRefGoogle Scholar
  28. 28.
    Sun, B., Fu, M.W., Lin, J.P., Ning, Y.Q.: Effect of low-temperature aging treatment on thermally-and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Mater. Des. 131, 49–59 (2017)CrossRefGoogle Scholar
  29. 29.
    Adharapurapu, R.R., Vecchio, K.S.: Effects of aging and cooling rate on the transformation of nanostructured Ti-50.8 Ni. J. Alloys Compd. 693, 150–163 (2017)CrossRefGoogle Scholar
  30. 30.
    Bertheville, B., Neudenberger, M., Bidaux, J.E.: Powder sintering and shape-memory behaviour of NiTi compacts synthesized from Ni and TiH2. Mater. Sci. Eng. A. 384, 143–150 (2004)Google Scholar
  31. 31.
    Tang, W., Sundman, B., Sandstrom, R., Qiu, C.: New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater. 47(12), 3457–3468 (1999)CrossRefGoogle Scholar
  32. 32.
    Yeung, K., Cheung, K., Lu, W., Chung, C.: Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant. Mater. Sci. and Eng. A 383(2), 213–218 (2004)CrossRefGoogle Scholar
  33. 33.
    Krone, L., Mentz, J., Stover, D., Epple, M., "NiTi shape memory alloy parts produced by metal injection molding", Proc. International Conference on Shape Memory and Superelastic Technologies, Baden-Baden, 495–500 (2004)Google Scholar
  34. 34.
    Mercier, O., Melton, K.N.: Theoretical and experimental efficiency of the conversion of heat into mechanical energy using shape-memeory alloys. J. Appl. Phys. 52(2), 1030–1037 (1981)CrossRefGoogle Scholar
  35. 35.
    Mercier, O., Melton, K.N.: Kinetics and thermodynamics of the shape-memory effect in martensitic NiTi and (Ni1− x Cu x) Ti alloys. J. Appl. Phys. 50(9), 5747–5756 (1979)CrossRefGoogle Scholar
  36. 36.
    Wasilewski, R.J., Butler, S.R., Hanlon, J.E.: On the martensitic transformation in TiNi. Met. Sci. J. 1(1), 104–110 (1967)CrossRefGoogle Scholar
  37. 37.
    Mukherjee, K., Sircar, S., Dahotre, N.B.: Thermal effects associated with stress-induced martensitic transformation in a Ti-Ni alloy. Mater. Sci. Eng. 74(1), 75–84 (1985)CrossRefGoogle Scholar
  38. 38.
    Chu, C., Chung, J., Chu, P.: Effects of heat treatment on characteristics of porous Ni-rich NiTiSMA prepared by SHS technique. Trans. Nonferr. Metal. Soc. 16(1), 49–53 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Majkic, G., Chennoufi, N., Chen, Y., Salama, K.: Synthesis of NiTi by low electrothermal loss spark plasma sintering. Metal. Mater. Trans. A. 38A, 2523–2530 (2007)CrossRefGoogle Scholar
  40. 40.
    Yuan, B., Chung, C., Zhu, M.: Microstructure and martensitic transformation behavior of porous NiTi shape memory alloy prepared by hot isostatic pressing processing. Mater. Sci. Eng. A. 382(1-2), 181–187 (2004)CrossRefGoogle Scholar
  41. 41.
    Shishkovsky, I., Tarasova, E., Zhuravel’, L., Petrov, A.: The synthesis of a biocomposite based on nickel titanium and hydroxyapatite under selective laser sintering conditions. Tech. Phys. Lett. 27, 211–213 (2001), 3Google Scholar
  42. 42.
    Haberland, C., Meier, H., Frenzel, J.: On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting.  ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 97–104, Georgia, USA, Sept. 19–21 (2012)Google Scholar
  43. 43.
    Chu, C., Chung, C., Lin, P.: DSC study of the effect of aging temperature on the reverse martensitic transformation in porous Ni-rich NiTi shape memory alloy fabricated by combustion synthesis. Mater. Lett. 59(4), 404–407 (2005)CrossRefGoogle Scholar
  44. 44.
    Liang, Y., Jiang, S., Zhang, Y., Yu, J.: Microstructure, mechanical property, and phase transformation of quaternary NiTiFeNb and NiTiFeTa shape memory alloys. Metals-Basel 7(8), 309 (2017)Google Scholar
  45. 45.
    Grossmann, C., Frenzel, J., Sampath, V., Depka, T., Eggeler, G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metal. Mater. Trans. A 40A, 2530–2544 (2009)CrossRefGoogle Scholar
  46. 46.
    Rosner, H., Schlossmacher, P., Shelyakov, A., Glezer, A.: The influence of coherent and semi-coherent TiCu precipitates on the martensitic transformation of melt-spun Ti50Ni25Cu25 shape memory ribbons. Mater. Trans. 42, 1758–1762 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Laser-based Manufacturing, School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations