Advertisement

Lasers in Manufacturing and Materials Processing

, Volume 6, Issue 4, pp 345–355 | Cite as

The Influence of Shielding Gases on Solidification Structures and Grain Size of AISI 304 Stainless Steel Fiber Laser Welds

  • K. M. HafezEmail author
  • M. M. Ghanem
  • M. A. Morsy
Article
  • 78 Downloads

Abstract

In laser welding, shielding gas should be carefully selected so that welding joints have an acceptable weld profile and weld quality. Bead-on-plate welding of AISI 304 stainless steel plates with 5 kW continuous wave (CW) fiber laser was performed with different nitrogen and argon mixtures. Fusion zone (FZ) morphology and microstructural characteristics of welds were investigated. The outcome was that nitrogen had a great effect on the final microstructure of the fusion zone, reducing the ferrite content and changing the microstructure grain size which will reflect on the mechanical properties of the weld zone.

Keywords

Laser welding Austenitic stainless steel Shielding gas Solidification structure Grain size 

Notes

Acknowledgements

The authors wish to gratefully acknowledge the support and generosity of Prof. Dr. Seiji Katayama, JWRI, Osaka University without which the present study could not have been completed; the acknowledgment extends to all of his Lab. members.

References

  1. 1.
    Klimpel, A., Lisiecki, A., Janicki, D.: Proceedings of the institution of mechanical engineers , part B : journal of engineering manufacture the influence of the shielding gas on the properties of a laser-melted surface of austenitic stainless steel. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 218(9), 1137–1144 (2004).  https://doi.org/10.1243/0954405041897130 CrossRefGoogle Scholar
  2. 2.
    Keskitalo, M., Mentyjärvi, K., Sundqvist, J., Eriksson, I., Kaplan, A.: The influence of shielding gas on the properties of laser welded stainless steel. In: Nord. Laser Mater. Process. Conf. 26/08/2013–28/08/2013, pp. 155–161 (2013)Google Scholar
  3. 3.
    Glowacki, M.H.: The effects of the use of different shielding gas mixtures in laser welding of metals. J. Phys. D. Appl. Phys. 28(10), 2051–2059 (1995).  https://doi.org/10.1088/0022-3727/28/10/009 CrossRefGoogle Scholar
  4. 4.
    Wang, H., Shi, Y., Gong, S., Duan, A.: Effect of assist gas flow on the gas shielding during laser deep penetration welding. J. Mater. Process. Technol. 184(1-3), 379–385 (2007).  https://doi.org/10.1016/j.jmatprotec.2006.12.014 CrossRefGoogle Scholar
  5. 5.
    Sathiya, P., Jaleel, M.Y.A.: Influence of shielding gas mixtures on bead profile and microstructural characteristics of super austenitic stainless steel weldments by laser welding. Int. J. Adv. Manuf. Technol. 54(5-8), 525–535 (2011).  https://doi.org/10.1007/s00170-010-2967-x CrossRefGoogle Scholar
  6. 6.
    Sathiya, P., Aravindan, S., Soundararajan, R., Noorul Haq, A.: Effect of shielding gases on mechanical and metallurgical properties of duplex stainless-steel welds. J. Mater. Sci. 44(1), 114–121 (2009).  https://doi.org/10.1007/s10853-008-3098-8 CrossRefGoogle Scholar
  7. 7.
    Chae, H.B., Kim, C.H., Kim, J.H., Rhee, S.: The effect of shielding gas composition in CO2 laser-gas metal arc hybrid welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 222(11), 1315–1324 (2008).  https://doi.org/10.1243/09544054JEM944 CrossRefGoogle Scholar
  8. 8.
    Hafez, K.M., KATAYAMA, S.: Fiber laser welding of AISI 304 stainless steel plates. Q. J. Japan Weld. Soc. 27(2), 69s–73s (2009).  https://doi.org/10.2207/qjjws.27.69s CrossRefGoogle Scholar
  9. 9.
    Kawahito, Y., Mizutani, M., Katayama, S.: Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J. Phys. D. Appl. Phys. 40 (2007) 5854.  https://doi.org/10.1088/0022-3727/40/19/009 CrossRefGoogle Scholar
  10. 10.
    Quintino, L., Costa, A., Miranda, R., Yapp, D., Kumar, V., Kong, C.J.: Welding with high power fiber lasers - a preliminary study. Mater. Des. 28(4), 1231–1237 (2007).  https://doi.org/10.1016/j.matdes.2006.01.009 CrossRefGoogle Scholar
  11. 11.
    Ma, J.C., Yang, Y.S., Tong, W.H., Fang, Y., Yu, Y., Hu, Z.Q.: Microstructural evolution in AISI 304 stainless steel during directional solidification and subsequent solid-state transformation. Mater. Sci. Eng. A. 444(1-2), 64–68 (2007).  https://doi.org/10.1016/j.msea.2006.08.039 CrossRefGoogle Scholar
  12. 12.
    Sato, Y., Dong, W., Kokawa, H., Kuwana, T.: Nitrogen absorption by Iron and stainless steels during YAG laser welding. ISIJ Int.. 40(Suppl), S20–S24 (2008).  https://doi.org/10.2355/isijinternational.40.suppl_s20 CrossRefGoogle Scholar
  13. 13.
    Zhao, L., Tian, Z., Peng, Y.: Porosity and nitrogen content of weld metal in laser welding of high nitrogen austenitic stainless steel. ISIJ Int. 47(12), 1772–1775 (2007).  https://doi.org/10.2355/isijinternational.47.1772 CrossRefGoogle Scholar
  14. 14.
    Taylor, P., Matsunawa, A., Mizutani, M., Katayama, S., Seto, N.: Porosity formation mechanism and its prevention in laser welding porosity formation mechanism and its prevention in laser. Weld. Int. 7116(6), 37–41 (2010).  https://doi.org/10.1533/wint.2003.3138. CrossRefGoogle Scholar
  15. 15.
    Okagawa, R., Dixon, R.D., Olson, D.L.: The influence of nitrogen from welding on stainless steel weld metal microstructures. Weld. J. 62, 204–209 (1983)Google Scholar
  16. 16.
    Siewert, T., Koteckim, D.: Constitution diagram for stainless steel weld metals a modification of the WRC. Weld. J. 14, 171–178 (1992)Google Scholar
  17. 17.
    Takalo, T., Suutala, N., Moisio, T.: Austenitic solidification mode in austenitic stainless steel welds. Metall. Trans. A. 10(8), 1173–1181 (2008).  https://doi.org/10.1007/bf02811663 CrossRefGoogle Scholar
  18. 18.
    Shankar, V., Gill, T.P.S., Mannan, S.L., Sundarlsan, S.: Solidification cracking in austenitic stainless steel welds, Sadhana - Acad. Proc. Eng. Sci. 28(3-4), 359–382 (2003).  https://doi.org/10.1007/BF02706438. CrossRefGoogle Scholar
  19. 19.
    Leda, H.: Nitrogen in martensitic stainless steels. J .Mater. Process. Tech. 53(1-2), 263–272 (1995).  https://doi.org/10.1016/0924-0136(95)01984-M CrossRefGoogle Scholar
  20. 20.
    Zhou, S.C., Yang, J., Yang, Y.J.: Effect of nitrogen on solidification structure of continuous casting AISI410 martensitic stainless steel. Metal. Int. 17, 40–43 (2012)Google Scholar
  21. 21.
    Raeisinia, B., Sinclair, C.W., Poole, W.J., Tomé, C.N.: On the impact of grain size distribution on the plastic behaviour of polycrystalline metals. Model. Simul. Mater. Sci. Eng. 16(2), 25001 (2008).  https://doi.org/10.1088/0965-0393/16/2/025001 CrossRefGoogle Scholar
  22. 22.
    Lehto, P., Romanoff, J., Remes, H., Sarikka, T.: Characterisation of local grain size variation, weld. World. 60, 1–22 (2016)Google Scholar
  23. 23.
    Odnobokova, M., Belyakov, A., Kaibyshev, R.: Development of Nanocrystalline 304L stainless steel by large strain cold working. Metals (Basel). 5(2), 656–668 (2015).  https://doi.org/10.3390/met5020656 CrossRefGoogle Scholar
  24. 24.
    Simmons, J.W.: Overview: high-nitrogen alloying of stainless steels. Mater. Sci. Eng. A. 207(2), 159–169 (1996).  https://doi.org/10.1016/0921-5093(95)09991-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central Metallurgical Research and development institute (CMRDI)HelwanEgypt

Personalised recommendations