Advertisement

Lasers in Manufacturing and Materials Processing

, Volume 6, Issue 4, pp 424–463 | Cite as

Laser Shock Peening and its Applications: A Review

  • Sundar REmail author
  • Ganesh P
  • Ram Kishor Gupta
  • Ragvendra G
  • B. K. Pant
  • Vivekanand Kain
  • Ranganathan K
  • Rakesh Kaul
  • K. S. Bindra
Article
  • 86 Downloads

Abstract

In this paper Laser Shock Peening (LSP), as a surface treatment technique for metals and alloys is reviewed. A brief introduction covering LSP process, LSP on various materials and some innovative applications of LSP have been discussed. Critical laser parameters for LSP such as laser energy, pulse width, wavelength, overlap rate, role of sacrificial coating and transparent overlay are presented towards parameter optimization perspective. A small section has been devoted to detail the development of a pulsed Nd:YAG laser that was built in house, exclusively for the LSP applications. Role of LSP in improving the material properties such as fatigue, Stress Corrosion Cracking (SCC), Inter Granular Corrosion (IGC) besides, rejuvenation of fatigue life of pre fatigued specimens and hybrid technique to rejuvenate the SCC damaged components are discussed. Further, results on oblique laser peening along with its successful application to the interior of cylindrical geometry specimens for improving the SCC resistance are also discussed.

Keywords

Nd:YAG laser Laser peening Spring steel Residual stress Stress corrosion Inter granular corrosion 

Notes

Acknowledgements

Authors would like to thank Mr. P.S. Hedaoo, K.S. Deohare, and Ram Nihal of RRCAT, for their technical help in assembling laser pump heads and preparation of sample jigs for the experiments. Author RS would like to thank Dr. C. Sudha, IGCAR for her useful suggestions to enrich the manuscript.

References

  1. 1.
    Askaryan, G.A., Moroz, E.M.: Pressure of evaporation of matter in a radiation beam. J Exp Theor Phys+. (U.S.S.R.). 43, 2319–2320 (1962)Google Scholar
  2. 2.
    Skeen, C.H., York, C.M.: Laser induced “blow off” phenomena. Appl Phys Lett. 12, 369 (1968)CrossRefGoogle Scholar
  3. 3.
    Gregg, D.W., Thomas, S.J.: Momentum transfer produced by focused laser giant pulses. J Appl Phys. 37(2787), (1966)Google Scholar
  4. 4.
    Fairand, B.P., Clauer, A.H., Jung, R.G., Wilcox, B.A.: Quantitative assessment of laser induced stress waves generated at confined surfaces. Appl Phys Lett. 25(8), 431–433 (1974)CrossRefGoogle Scholar
  5. 5.
    Clauer, A.H., Fairand, B.P., Wilcox, B.A.: Pulsed laser induced deformation in an Fe-3 Wt Pct Si Alloy. Metall. Trans. A. 8A, 119–125 (1977)CrossRefGoogle Scholar
  6. 6.
    Allan, H., Clauer, B., Fairand, P., Bena, A.: Wilcox.: laser shcok hardening of weld zones in Aluminium alloys. Metall. Trans. A. 8A, 1871–1876 (1977)Google Scholar
  7. 7.
    Allan H. Clauer.: A Historical Perspective on Laser Shock Peening, MFN Metal Finishing News, 10, (2009), http://www.mfn.li/archive/issue_view.php?id=648, Accessed 04 Jun 2019
  8. 8.
    Mannava, S., and Ferrigno, S.J..: Laser shock peening for gas turbine engine vane repair. US patent 5675892A, General Electric Company (1997). https://patents.google.com/patent/US5675892A/en. Accessed 04 Jun 2019
  9. 9.
    Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Tiwari, P., Kukreja, L.M., Oak, S.M., Dasari, S., Ragvendra, D.: Studies of laser peening on spring steel for automotive applications. Opt Laser Eng. 50, 678–686 (2012)CrossRefGoogle Scholar
  10. 10.
    Ganesh, P., Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Hedaoo, P., Ragvendra, G., Anand Kumar, S., Tiwari, P., Nagpure, D.C., Bindra, K.S., Kukreja, L.M., Oak, S.M.: Studies on fatigue life enhancement of pre-fatigued spring steel specimens using laser shock peening. Mater Des. 54, 734–741 (2014)CrossRefGoogle Scholar
  11. 11.
    Pant, B.K., Sundar, R., Kumar, H., Kaul, R., Pavan, A.H.V., Ranganathan, K., Bindra, K.S., Oak, S.M., Kukreja, L.M., Prakash, R., Kamaraj, M., et al.: Mater. Sci. Eng., A. 587, 352–358 (2013)CrossRefGoogle Scholar
  12. 12.
    Gupta, R.K., Sundar, R., Sunil Kumar, B., Ganesh, P., Kaul, R., Ranganathan, K., Bindra, K.S., Kain, V., Oak, S.M., Kukreja, L.M.: A hybrid laser surface treatment for refurbishment of stress corrosion cracking damaged 304L stainless steel. J. Mater. Eng. Perform. 24, 2569–2576 (2015)CrossRefGoogle Scholar
  13. 13.
    Sundar, R., Ganesh, P., Sunil Kumar, B., Gupta, R.K., Nagpure, D.C., Kaul, R., Ranganathan, K., Bindra, K.S., Kain, V., Oak, S.M., Singh, B.: Mitigation of stress corrosion cracking susceptibility of machined 304L stainless steel through laser peening. J. mater. Eng. Perform. 25, 3710–3724 (2016)CrossRefGoogle Scholar
  14. 14.
    Gupta, R.K., Sunil Kumar, B., Sundar, R., Ram Sankar, P., Ganesh, P., Kaul, R., Kain, V., Ranganathan, K., Bindra, K.S., Singh, B.: Enhancement of intergranular corrosion resistance of type 304 stainless steel through laser shock peening. Corros Eng Sci Techn. 52(3), 220–225 (2017)CrossRefGoogle Scholar
  15. 15.
    Abdullahi, K., Gujba 1, Medraj, M.: Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials. 7, 7925–7974 (2014)CrossRefGoogle Scholar
  16. 16.
    Peyre, P., Berthe, L., Vignal, V., Popa, I., Baudin, T.: Analysis of laser shock waves and resulting surface deformations in an Al–cu–li aluminum alloy. J Phys D Appl Phys. 45(33), 335304 (2012)CrossRefGoogle Scholar
  17. 17.
    Peyre, P., Fabbro, R., Merrien, P., Lieurade, H.P., et al.: Mater. Sci. Eng., A. A210, 102–113 (1996)CrossRefGoogle Scholar
  18. 18.
    Amarchinta, H.K., Grandhi, R.V., Langer, K., Stargel, D.S.: Material model validation for laser shock peening process simulation. Modelling Simul Mater Sci Eng. 17(1), 015010 (2009)CrossRefGoogle Scholar
  19. 19.
    Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., Bartnicki, E.: Experimental study of laser-driven shock waves in stainless steels. J Appl Phys. 84(11), 5985–5992 (1998)CrossRefGoogle Scholar
  20. 20.
    Hong, X., Wang, S., Guo, D., Wu, H., Wang, J., Dai, Y., Xia, X., Xie, Y.: Confining medium and absorptive overlay: Their effects on a laser-induced shock wave. Opt Laser Eng. 29, 447–455 (1998)CrossRefGoogle Scholar
  21. 21.
    Massse, J.-E., Barreau, G.: Laser generation of stress waves in metal. Surf. Coat. Techno. 70, 231–234 (1995)CrossRefGoogle Scholar
  22. 22.
    Devaux, D., Fabbro, R., Tollier, L., Bartnicki, E.: Generation of shcok waves by laser-induced plasma in confined geometry. JAppl Phy. 74(4), 2268–2273 (1993)CrossRefGoogle Scholar
  23. 23.
    Berthe, L., Fabbro, R., Peyre, P., Tollier, L., Bartnicki, E.: Shock waves from a water-confined laser-generated plasma. JAppl Phy. 82(6), 2826–2832 (1997)CrossRefGoogle Scholar
  24. 24.
    Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J Appl Phy. 68, 75–784 (1990)CrossRefGoogle Scholar
  25. 25.
    Wu, B., Shin, Y.C.: A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments. J Appl Phys. 97(113517), 113517 (2005)CrossRefGoogle Scholar
  26. 26.
    Wu, B., Shin, Y.C.: A one-dimensional hydrodynamic model for pressures induced near the coating-water interface during laser shock peening. J Appl Phys. 101(023510), (2007)Google Scholar
  27. 27.
    Wu, B., Shin, Y.C.: Two dimensional hydrodynamic simulation of high pressures induced by high power nanosecond laser matter interactions under water. J. Appl. Phys. 101, 103514 (2007)CrossRefGoogle Scholar
  28. 28.
    Yunfeng Cao., Yung C. Shin.: Shock wave propagation and spallation study in laser shock peening. J. Eng. Mater. Technol. 132, 041005–1 to 041005–8 (2010),Google Scholar
  29. 29.
    Wei, X.L., Ling, X.: Numerical modeling of residual stress induced by laser shock processsing. Appl Surf Sci. 301, 557–563 (2014)CrossRefGoogle Scholar
  30. 30.
    Ayed, M., Frija, M., Fathallah, R.: Prediction of residual stress profile and optimization of surface conditions induced by laser shock peening process using artificial neural networks. Int J Adv Manuf Technol. 100(9-12), 2455–2471 (2019).  https://doi.org/10.1007/s00170-018-2883-z CrossRefGoogle Scholar
  31. 31.
    Sobieslaw Stanislaw Gace.: Molecular dynamics simulation of shock waves in laser-material interaction. Ph.D thesis, Iowa State University (2009). https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1712&context=etd Accessed on 04 Jun 2019
  32. 32.
    Zhencheng Ren, Chang Ye, Yalin Dong.: Molecular dynamic simulation of surface amorphization of NiTi under dynamic shock peening. Proceedings of the ASME 2015 International Manufacturing Science and Engineering Conference. MSEC2015. June 8–12, (2015), Charlotte, North Carolina, USA  https://doi.org/10.1115/MSEC2015-9320
  33. 33.
    Peyre, P., Fabbro, R., Berthe, L., Dubouchet, C.: Laser shock processing of materials, physical processes involved and examples of applications. J Laser Appl. 8(3), 135–141 (1996)CrossRefGoogle Scholar
  34. 34.
    Fournier, J., Ballard, P., Merrien, P., Barralis, J., Castex, L., Fabbro, R.: Mechanical effects induced by shock waves generated by high energy laser pulses, J. Phy III, France. 1(9), 1467–1480 (1991)CrossRefGoogle Scholar
  35. 35.
    Peyre, P., Fabbro, R.: Laser shock processing: a review of the physics and applications. Opt Quant Electron. 27, 1213–1229 (1995)Google Scholar
  36. 36.
    Jiang, X.P., Man, C.-S., Shepard, M.J., Zhai, T.: Effects of shot-peening and re-shot-peening on four-pointbend fatigue behavior of Ti–6Al–4V. Mat Sci and Engg A. 468–470, 137–143 (2007)CrossRefGoogle Scholar
  37. 37.
    Paul, S.P., Cammett, J.T.: The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int J Fatigue. 26(9), 975–982 (2004)CrossRefGoogle Scholar
  38. 38.
    Delgado, P., Cuesta, I.I., Alegre, J.M., Díaz, A.: State of the art of deep rolling. Precis Eng. 46, 1–10 (2016)CrossRefGoogle Scholar
  39. 39.
    Statnikov, E.S., Korolkov, O.V., Vityazev, V.N.: Physics and mechanism of ultrasonic impact. Ultrasonics. 44, e533–e538 (2006)CrossRefGoogle Scholar
  40. 40.
    Srivastava, M., Tripathi, R., Hloch, S., Chattopadhyaya, S., Dixit, A.R.: Potential of using water jet peening as a surface treatment process for welded joints. Procedia Eng. 149, 472–480 (2016)CrossRefGoogle Scholar
  41. 41.
    Soyama, H., Sait, K., Saka, M.: Improvement of fatigue strength of aluminium alloy by cavitation shotless peening. J. Eng. Mater. Technol. 124, 135 (2002)CrossRefGoogle Scholar
  42. 42.
    Linda Suzanne Clitheroe.: The physical and microstructural properties of peened austenitic stainless steel. Ph.D Thesis. University of Manchester, (2010), https://www.research.manchester.ac.uk/portal/files/54509593/FULL_TEXT.PDF Accessed on 04 Jun 2019
  43. 43.
    Ding K &Ye L.: Laser shock peening performance and process simulation, WoodHead publishing in materials, Woodhead Publishing Limited and CRC Press LLC, (2006)Google Scholar
  44. 44.
    Charles S. Montross, Tao Wei., Lin Ye., Graham Clark., Yiu-wing Mai.: Laser shock processing and its effects on microstructure and properties of metal alloys: a review, Int J Fatigue 24, 1021–1036 (2002)Google Scholar
  45. 45.
    Prevey, P.S.: The effect of cold work on the thermal stability of residual compression in surface enhanced IN718, 20th ASM heat treating society conference proceedings 9–12, Oct 2000, St.Louis, MO http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.513.2788&rep=rep1&type=pdf Accessed on 16 Jun 2019
  46. 46.
    Sano, Y., Akita, K., Masaki, K., Ochi, Y., Altenberger, I., Scholtes, B.: Laser peening without coating as a surface enhancement technology. J Laser Micro Nanoen. 1, 161–166 (2006)CrossRefGoogle Scholar
  47. 47.
    Sano, Y., Mukai, N., Okazak, K., Obata, M.: Residual stress improvement in metal surface by underwater laser irradiation. Nucl. Instr. Meth. Phys. Res. B. 121, 432–436 (1997)CrossRefGoogle Scholar
  48. 48.
    Zhu, J., Jiao, X., Zhou, C., Gao, H.: Applications of underwater laser peening in nuclear power plant maintenance. Energy Procedia. 16, 153–158 (2012)CrossRefGoogle Scholar
  49. 49.
    Kalainathan, S., Prabhakaran, S.: Recent development and future perspectives of low energy laser shock peening: review. Opt Laser Technol. 81, 137–144 (2016)CrossRefGoogle Scholar
  50. 50.
    Yoda, M., Mukai, N., Sano, Y., Ogawa, K., Kimura, M., Sato, K., Uehara, T., Sudo, A., and Suezono, N.: Fiber-delivered laser peening system to improve mechanical properties of metal surface. Transactions on Engineering Sciences. ISSN 1743–3533, 33, 233–242 WIT Press, (2001)Google Scholar
  51. 51.
    Karthik, D., Kalainathan, S., Swaroop, S.: Surface modification of 17-4 PH stainless steel by laser peening without protective coating process. Surf Coat Technol. 278, 138–145 (2015)CrossRefGoogle Scholar
  52. 52.
    Liao, Y., Ye, C., Cheng, G.J., et al.: Opt Laser Technol. 78, 15–24 (2016)CrossRefGoogle Scholar
  53. 53.
    Liao, Y., Ye, C., Kim, B.-J., Suslov, S., Stach, E.A., Cheng, G.J.: Nucleation of highly dense nanoscale precipitates based on warm laser shock peening. J. Appl. Phys. 108, 063518–1–063518-8 (2010)Google Scholar
  54. 54.
    Hackel, L., Rankin, J.R., Rubenchik, A., King, W.E., Matthews, M.: Laser peening: A tool for additive manufacturing post-processing. Addit. Manuf. 24, 67–75 (2018)CrossRefGoogle Scholar
  55. 55.
    Kalentics, N., Boillat, E., Peyre, P., Gorny, C., Kenel, C., Leinenbach, C., Jhabvala, J., Logé, R.E.: 3D laser shock peening – A new method for 3D control of residual stresses in selective laser melting. Mater. Des. 130, 350–356 (2017)CrossRefGoogle Scholar
  56. 56.
    Sihai Luo., Liucheng Zhou., Xuede Wang., Xin Cao., Xiangfan Nie and Weifeng He.: Surface nanocrystallization and amorphization of dual-phase TC11 titanium alloys under laser induced ultrahigh strain-rate plastic deformation. Materials. 11; 563 (2018)Google Scholar
  57. 57.
    Samuel Adu-Gyamfi., Ren, X.D., Enoch Asuako Larson., Yunpeng Ren., Zhaopong Tong.: The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy. Opt. Laser. Technol. 108, 177–185 (2018)Google Scholar
  58. 58.
    Correa, C., Ruiz de Lara, L., Díaz, M., Gil-Santos, A., Porro, J.A., Ocaña, J.L.: Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening. Int. J. Fatigue. 79, 1–9, (2015)Google Scholar
  59. 59.
    Qiao Hongchao., Sun Boyu., Zhao Jibin., Lu Ying., Cao Zhihe.: Numerical modeling of residual stress field for linear polarized laser oblique shock peening. Optik (2019),  https://doi.org/10.1016/j.ijleo.2019.04.083
  60. 60.
    Fabbro, R., Peyre, P., Berthe, L., Scherpereel, X.: Physics and applications of laser-shock processing. J Laser Appl. 10(6), 265–279 (1998)CrossRefGoogle Scholar
  61. 61.
    Berthe, L., Fabbro, R., Peyre, P., Bartnicki, E.: Wavelength dependent of laser shock-wave generation in the water-confinement regime. J. Appl. Phys. 85, 7552 (1999)CrossRefGoogle Scholar
  62. 62.
    Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron. 33(10), 1706–1716 (1997)CrossRefGoogle Scholar
  63. 63.
    Noack, J., Vogel, A., et al.: IEEE J. Quantum Electron. 35, 1156–1167 (1999)CrossRefGoogle Scholar
  64. 64.
    Benxin, W., Tao, S., Lei, S.: Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments, app. Surf Sci. 256, 4376–4382 (2010)CrossRefGoogle Scholar
  65. 65.
    Dongkyun Lee and Elijah Kannatey-Asibu, Jr.: Experimental investigation of laser shock peening using femtosecond laser pulses, J. Laser Appl. 23, 022004–1 to 022004–9(2011)Google Scholar
  66. 66.
    Petan, L., Cana, J.L.O., Grum, J.: Influence of laser shock peening pulse density and spot size on the surface integrity of X2NiCoMo18–9-5 maraging steel. Surf. Coat. Technol. 307, 262–270 (2016)CrossRefGoogle Scholar
  67. 67.
    Hu, Y., Yao, Z.: Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser. Surf Coat Techol. 202(1517–1525), 1517–1525 (2008)CrossRefGoogle Scholar
  68. 68.
    Hu, Y., Yao, Z.: Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater Sci Eng. A417(334–340), (2006)Google Scholar
  69. 69.
    Walter Koechner.: Solid State Laser Engineering” Springer Series in Optical Sciences, Sixth revised and updated edition, USA (2006)Google Scholar
  70. 70.
    Carthy, N.M., Lavigne, P.: Large-size Gaussian mode in unstable resonators using Gaussian mirrors. Opt. Lett. 10, 553–555 (1985)CrossRefGoogle Scholar
  71. 71.
    Silvestri, S.D., Laporta, P., Magni, V.S., O.: Unstable laser resonators with super-Gaussian mirrors. Opt Lett. 13(3), 201–203 (1988)CrossRefGoogle Scholar
  72. 72.
    Sundar, R., Kumar, H., Kaul, R., Ranganathan, K., Tiwari, P., Kukreja, L.M., Oak, S.M.: Studies on laser peening using different sacrificial coatings. Surf Eng. 28(8), 564–568 (2012)CrossRefGoogle Scholar
  73. 73.
    Cullity, B.D.: Elements of X-ray diffraction, copyright 1956. Addison-Wesley publishing company, USAGoogle Scholar
  74. 74.
    Pineault, J.A, Belassel, M., Brauss, M.E.: X-ray diffraction residual stress measurement in failure analysis. in: William T Becker., Roch J Shipley (Eds.), Failure analysis and prevention, ASM International. 11, 484–497.  https://doi.org/10.31399/asm.hb.v11.a0003528
  75. 75.
    Noyan, I.C and Cohen, J.B.: in Iischner, B., amd Grant, N.J.: Residual Stress-measurement by diffraction and interpretation. Springer series on materials research and engineering New York (1987),Google Scholar
  76. 76.
    Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G.: Methods of measuring residual stresses in components. Mater Des. 35, 572–588 (2012)CrossRefGoogle Scholar
  77. 77.
    Chu, J.P., Rigsbee, J.M., Banas, G., Elsayed-Ali, H.E.: Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Mater Sci Eng A. 260, 260–268 (1999)CrossRefGoogle Scholar
  78. 78.
    Paul Prevey., Jayaraman, N., Ravi Ravindranath.: Introduction of Residual Stresses to Enhance Fatigue Performance in the Initial Design. GT2004–53971, 231–239; doi: https://doi.org/10.1115/GT2004-53971
  79. 79.
    Ferreira, J.A.M., Boorrego, L.F.P., Costa, J.D.M.: Effects of surface treatments on the fatigue of notched bend specimens. Fatigue Fract. Eng. Mater. Struct. 19, 111 (1996)CrossRefGoogle Scholar
  80. 80.
    Hammersley, G., Hackel, L.A., Harris, F.: Surface prestressing to improve fatigue strength of components by laser shot peening. Opt Laser Eng. 34, 327–337 (2000)CrossRefGoogle Scholar
  81. 81.
    Kirk D.: External characteristics of shot peened surfaces, The Shot Peener; 24–32, (2008) https://www.shotpeener.com/library/pdf/2008037.pdf Accessed on 04 Jun 2019
  82. 82.
    Ludian, T., Wagner, L.: Coverage effects in shot peening of Al2024-T4.In: Proceedings 9th international conference on shot peening (ICSP9),296–301, Sept.6–9 (2005)Paris, France. https://www.shotpeener.com/library/pdf/2005100.pdf Accessed on 04 Jun 2019
  83. 83.
    Kailash Chaudhary.: Importance of controlling parameters in shot peening process. JETIR ISSN-2349–5162, 4, 220–223, (2017)Google Scholar
  84. 84.
    Dieter, G.E.: Mechanical metallurgy. McGraw Hill Book Co Singapore. ISBN-0071004068, (1988)Google Scholar
  85. 85.
    Lu, J.Z., Luo, K.Y., Zhang, Y.K., Cui, C.Y., Sun, G.F., Zhou, J.Z., Zhang, L., You, J., Chen, K.M., Zhong, J.W.: Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Mater. 58(11), 3984–3994 (2010)CrossRefGoogle Scholar
  86. 86.
    Luo, K.Y., Lu, J.Z., Zhang, Y.K., Zhou, J.Z., Zhang, L.F., Dai, F.Z., Zhang, L., Zhong, J.W., Cui, C.Y.: Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel. Mater Sci Eng A. 528(13-14), 4783–4788 (2011)CrossRefGoogle Scholar
  87. 87.
    Clauer, A.H.: Laser shock peening for fatigue resistance. In: Gregory, J.K., Rack, H.J., Eylon, D. (eds.) Surface Performance of Titanium, pp. 217–230. TMS, Warrendale, PA (1996)Google Scholar
  88. 88.
    Hill, M.R., Dewald, A.T., Dema, A.G., Hackel, L.A., Chen, H.-L., Brent Dane, C., Specht, R.C., Harris, F.B.: Laser peening technology. Adv Mater Processes. 161, 65–67 (2003)Google Scholar
  89. 89.
    Stephens, R.I.: Effect of shot and laser peening on SAE1010 steel tube with a transverse center weld subjected to constant and variable amplitude loading, www.shotpeener.com/library/pdf/2009031.pdf, Accessed on 04 Jun 2019
  90. 90.
    Farhangi, H., Moghadam, A.A.F.: Fractographic investigation of the failure of second stage gas turbine blades, Proceedings of the 8th International Fracture Conference, 577–584, Istanbul, Turkey, Nov.7–9, (2007) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.3140&rep=rep1&type=pdf, Accessed on 04 Jun 2019
  91. 91.
    Fathallah, R., Laamouri, A., Sidhom, H., Braham, C.: High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue. 26(10), 1053–1067 (2004)CrossRefGoogle Scholar
  92. 92.
    Jie Dong., Wencai Liu., Wenjiang Ding., and Jianxin Zou.: Surface characteristics and high cycle fatigue performance of shot peened magnesium alloy ZK60, JOM. 2011, 682191 (2011)Google Scholar
  93. 93.
  94. 94.
    Prévey, P., Hornbach, D., Mason, D.: Thermal residual stress relaxation and distortion in surface enhanced gas turbine components, in: D.L.Milam, etal. (Eds.), Proceedings of the 17th Heat Treating Society Conference and 1st International Induction Heat Treating Symposium, ASM International, Materials Park, OH,3–12 (1998) https://pdfs.semanticscholar.org/72be/98c1a74dbf0cf0c97acf7a6e02d7dc4f8b7e.pdf Accessed on 16 Jun 2019
  95. 95.
    Mochizuki, M.: Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking. Nucl Eng Des. 237(2), 107–123 (2007)CrossRefGoogle Scholar
  96. 96.
    Khatak, H.S and Raj, B., Ed.: Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, Woodhead Publishing, Cambridge, 74–139, (2002)Google Scholar
  97. 97.
    Fe’ron, D and Olive, J.-M, Ed.: Corrosion issues in light water reactors—stress corrosion cracking. 1st ed., Woodhead Publishing, Cambridge, (2007)Google Scholar
  98. 98.
    Stress corrosion cracking in light water reactors: good practices and lessons learned, IAEA Nuclear Energy Series”, NP-T-3.13, 2011, International Atomic Energy Agency, Vienna, https://www-pub.iaea.org/MTCD/Publications/PDF/P1522_web.pdf, Accessed on 05 Jun 2019
  99. 99.
    Nakahara, M.: Preventing stress corrosion cracking of austenitic stainless steels in chemical plants. NiDi technical series 10066, Nickel Development Institute, https://www.nickelinstitute.org/media/1766/preventingstress_corrosioncrackingofausteniticstainlesssteelsinchemicalplants_10066_.pdf, Accessed on 05 Jun 2019
  100. 100.
    Esmacher, J.: Stress corrosion cracking in boilers and cooling water systems, stress corrosion cracking—theory and practice, V.S. Raja and T. Shoji, Ed., Woodhead Publishing, Philadelphia, 537–607 (2011)  https://doi.org/10.1533/9780857093769.4.539
  101. 101.
    Jerome Isselin., Akira Kai., Kazuhiko Sakaguchi., and Tetsuo Shoji.: Assessment of the effects of cold work on crack initiation in a light water environment using the small-punch test, Metall. Mater. Trans. A. 39(A), p 1099–1108 (2008)Google Scholar
  102. 102.
    Andresen, P.L., Morra, M.M.: IGSCC of non-sensitized stainless steels in high temperature water. J Nucl Mater. 383, 97–111 (2008)CrossRefGoogle Scholar
  103. 103.
    Litao Chang, M., Grace Burke, M., Scenini, F.: Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water. Scripta Mater. 164, 1–5 (2019)CrossRefGoogle Scholar
  104. 104.
    Sueishi, Y., Kohyama, A., Kinoshita, H., Narui, M., Fukumoto, K.: Microstructure and nano-hardness analyses of stress corrosion cracking utilizing 316L core shroud of BWR power reactors. Fusion Eng Des. 81(8-14), 1099–1103 (2006)CrossRefGoogle Scholar
  105. 105.
    Lyon, K.N., Marrow, T.J., Lyon, S.G.: Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J Mater Process Technol. 218, 32–37 (2015)CrossRefGoogle Scholar
  106. 106.
    Ghosh, S., Rana, V.P.S., Kain, V., Mittal, V., Baveja, S.K.: Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des. 32(7), 3823–3831 (2011)CrossRefGoogle Scholar
  107. 107.
    Trethewey, K.R.: Some observations on the current status in the understanding of stress-corrosion cracking of stainless steels. Mater Des. 29(2), 501–507 (2008)CrossRefGoogle Scholar
  108. 108.
    Suzuki, S., Takamori, K., Kumagai, K., Sakashita, A., Yamashita, N., Shitara, C., and Okamura, Y.: Stress corrosion cracking in low carbon stainless steel components in BWRs, E-J. Adv. Maint, 1, 1–29 (2009) http://www.jsm.or.jp/ejam/Vol.1.No.1/AP/EJAMVol.1(2009)1-29_S_SUZUKI_et_al.pdf Accessed on 16 Jun 2019
  109. 109.
    Ghosh, S., Kain, V.: Microstructural changes in AISI, 304 stainless steel due to surface machining: effect on its susceptibility to chloride stress corrosion cracking. J Nucl Mater. 402, 62–67 (2010)CrossRefGoogle Scholar
  110. 110.
    Ghosh, S., Kain, V.: Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI, 304L stainless steel. Mater Sci Eng A. 527(3), 679–683 (2010)CrossRefGoogle Scholar
  111. 111.
    Lyon, K.N., Marrow, T.J., Lyon, S.B.: Influence of milling on the development of stress corrosion cracks in austenitic stainless steel. J Mater Process Technol. 218, 32–37 (2015)CrossRefGoogle Scholar
  112. 112.
    Acharyya, S.G., Khandelwal, A., Kain, V., Samajdar, I.: Surface working of 304L stainless steel: impact on microstructure, electrochemical behaviour and SCC resistance. Mater Charact. 72, 68–76 (2012)CrossRefGoogle Scholar
  113. 113.
    Lu, J.Z., Luo, K.Y., Yang, D.K., Cheng, X.N., Hu, J.L., Dai, F.Z., Qi, H., Zhang, L., Zhong, J.S., Wang, Q.W and Zhang, Y.K.: Effects of laser peening on stress corrosion cracking (SCC) of ANSI, 304 austenitic stainless steel, Corros Sci 60, p 145–152 (2012)Google Scholar
  114. 114.
    ASTM: G36 94(2018), Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution. ASTM International, West Conshohocken, PA (2018).  https://doi.org/10.1520/G0036-94R18 CrossRefGoogle Scholar
  115. 115.
    Dayal, R.K, Parvathavarthini, N., Raj, B.: Influence of metallurgical variables on sensitization kinetics in austenitic stainless steel. Int Mater Rev 50, 129–155 (2005)Google Scholar
  116. 116.
    Ganesh, P.: Vinod kumar a, Thinaharan C, Nanda Gopala Krishna, George R P, Parvathavarthini N, rai S K, Rakesh Kaul, Kamachi Mudali U, Kukreja L M.: enhancement of intergranular corrosion resistance of type 304 stainless steel through a novel surface e thermos-mechanical treatment, surf. Coat. Techol. 232, 920–927 (2013)Google Scholar
  117. 117.
    Akgun, O.V., Inal, O.T.: Desensitization of sensitized 304 stainless steel by laser surface melting. J Mater Sci. 29, 2147–2153 (1992)CrossRefGoogle Scholar
  118. 118.
    Kain, V., Chandra, K., Adhe, K.N., De, P.K.: Effect of cold work on low temperature sensitization behavior of austenitic stainless steel. J Nucl Mater. 334(2-3), 115–132 (2004)CrossRefGoogle Scholar
  119. 119.
    Lu, J.Z., Luo, K.Y., Zhang, Y.K., Sun, G.F., Gu, Y.Y., Zhou, J.Z., Ren, X.D., Zhang, X.C., Zhang, L.F., Chen, K.M., Cui, C.Y., Jiang, Y.F., Feng, A.X., Zhang, L.: Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 58(16), 5354–5362 (2010)CrossRefGoogle Scholar
  120. 120.
    Zhou, L., He, W., Luo, S., Long, C., Wang, C., Nie, X., He, G., Shen, X.J., Li, Y.: Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. J. Alloys Compd. 655, 66–70 (2016)CrossRefGoogle Scholar
  121. 121.
    Jang, D.Y., Watkins, T.R., Kozaczek, K.J., Hubbard, C.R., Cavin, O.B.: Surface residual stresses in machined austenitic stainless steel. Wear. 194(1-2), 168–173 (1996)CrossRefGoogle Scholar
  122. 122.
    Su, C.Y., Chou, C.P., Wu, B.C., Lih, W.C.: Plasma transferred arc welding of the nickel-base superalloy IN-738LC. J Mater Eng Perform. 6(5), 619–627 (1997)CrossRefGoogle Scholar
  123. 123.
    Bhaduri, A.K, Gil, T.P.S., Albert, S.K, Shanmugam, K., and Iyer, D.R.: Repair welding of cracked steam turbine blades using austenitic and martensitic stainless steel consumables. Nucl Eng Des 206, 249–259 (2001)Google Scholar
  124. 124.
    Henderson, M.B., Arrell, D., Larsson, R., Heobel, M., Merchant, G.: Practices for industrial gas turbine applications. Sci Technol Weld Join. 9(1), 13–21 (2004)CrossRefGoogle Scholar
  125. 125.
    Kumar, A., Boy, J., Zatorski, R., Stephenson, J.D.: Thermal Spray and Weld Repair Alloy in the repair of Cavitation Damage in Turbines and Pumps:A Technical Note. J. Therm. Spray Technol. 14, 177–182 (2005)CrossRefGoogle Scholar
  126. 126.
    Steen, W.M., Mazumdar, J.: Laser Material Processing, 4th edn. Springer, London, UK (2010)CrossRefGoogle Scholar
  127. 127.
    Liu, Q., Janardhana, M., Hinton, B., Brandt, M., Sharp, K.: Laser cladding as potential repair technology for damaged aircraft components. Int J Struct Integr. 2(3), 314–321 (2011)CrossRefGoogle Scholar
  128. 128.
    Van Rooyen, C., Berger, H., and Theron, M.: Laser cladding crack repair of austenitic stainless steel, Proc. 5th Int. Conf. WLT-Conf. on Lasers in Manufacturing, Munich, (2009)Google Scholar
  129. 129.
    Sexton, S., Lavin, S., Byrne, G., Kennedy, A.: Laser cladding of aerospace materials. J Mater Process Technol. 122(1), 63–68 (2002)CrossRefGoogle Scholar
  130. 130.
    Capello, E., Colombo, D., and Previtali, B.: Repairing of sintered tools using laser cladding by wire, J Mater Process Technol 164–165, 990–1000 (2005), 164-165Google Scholar
  131. 131.
    Stewart, J., Wells, D.B., Scott, P.M., Bransden, A.S.: The prevention of IGSCC in sensitized stainless steel by laser surface melting. Corrosion. 46(8), 618–620 (1990)CrossRefGoogle Scholar
  132. 132.
    Anthony, T.R., Cline, H.E.: Surface normalization of sensitized stainless steel by laser surface melting. J Appl Phys. 49(3), 1248–1255 (1978)CrossRefGoogle Scholar
  133. 133.
    Mudali, U.K., Dayal, R.K.: Improving intergranular corrosion resistance of sensitized type 316 stainless steel by laser surface melting. J. Mater. Eng. Perform. 341–3465 (1992)Google Scholar
  134. 134.
    Kwok, C.T., Lo, K.H., Chan, W.K., Cheng, F.T., Man, H.C.: Effect of laser surface melting on intergranular corrosion behavior of aged austenitic and duplex stainless steels. Corros Sci. 53(4), 1581–1591 (2011)CrossRefGoogle Scholar
  135. 135.
    Bao, G., Shinozaki, K., Iguro, S., Inkyo, M., Yamamoto, M., Mahara, Y., Watanabe, H.: Stress corrosion cracking sealing in overlaying of Inconel 182 of by laser surface melting. J Mater Process Technol. 173(3), 330–336 (2006)CrossRefGoogle Scholar
  136. 136.
    Zhang, Y.K., Ren, X.D., Zhou, J.Z., Lu, J.Z., Zhou, L.C.: Investigation of stress intensity factor changing on the hole crack subject to laser shock processing. Mater Des. 30(7), 2769–2773 (2009)CrossRefGoogle Scholar
  137. 137.
    Tumbull, A., Mingard, K., Lord, J.D., Roebuck, B., Tice, D.R., Mottershead, K.J., Fairweather, N.D., Bradbury, A.K.: Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corros Sci. 53(10), 3398–3415 (2011)CrossRefGoogle Scholar
  138. 138.
    Suryanarayana, C., and Norton, M.G.: X-ray Diffraction—A Practical Approach, Plenum Press, New York, 63–98(1998)Google Scholar
  139. 139.
    ASM Handbook, Vol 6, Welding Brazing and Soldering, ASM international, 1993 http://www.asminternational.org: ISBN 0–87170–377-7(V.1)
  140. 140.
    Stamm, H., Holzwarth, U., Boerman, D.J., Dos Santos, M.F., Olchini, A., Zausch, R.: Effect of laser surface treatment on high cycle fatigue of AISI, 316L stainless steel. Fatigue Fract Eng Mater Struct. 19(8), 985–995 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sundar R
    • 1
    Email author
  • Ganesh P
    • 2
  • Ram Kishor Gupta
    • 2
  • Ragvendra G
    • 3
  • B. K. Pant
    • 4
  • Vivekanand Kain
    • 5
  • Ranganathan K
    • 2
  • Rakesh Kaul
    • 2
  • K. S. Bindra
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Raja Ramanna Centre for Advanced TechnologyIndoreIndia
  3. 3.Materials Info Consultancy Private LtdPuneIndia
  4. 4.Bharat Heavy Electricals LtdGurgaonIndia
  5. 5.Bhaba Atomic Research CentreMumbaiIndia

Personalised recommendations