Lasers in Manufacturing and Materials Processing

, Volume 6, Issue 3, pp 332–343 | Cite as

Antibacterial and Corrosion Studies on Nanosecond Pulse Laser Textured 304 L Stainless Steel Surfaces

  • Ram Kishor GuptaEmail author
  • B. Anandkumar
  • Ambar Choubey
  • R. P. George
  • P. Ganesh
  • B. N. Upadhyaya
  • John Philip
  • K. S. Bindra
  • R. Kaul


The present paper describes results of study on surface texturing of 304 L stainless steel with 1064 nm Nd:YAG laser having average power of 15 W, pulse width of 100 ns, scan rate of 20 mm/s and repetition rate of 2 kHz. Detailed surface characterization was done using microscopic techniques, XRD and water contact angle measurement. Nanosecond laser texturing generated a thin remelted layer with wavy pattern on the surface that enhanced micro roughness and hydrophobicity. XRD pattern revealed peak broadening indicating reduction in cold working effect and increase in grain size. Laser assisted texturing were successfully introduced on 304 L SS with 1064 nm wavelength and 100 ns laser pulses of energy 7.5 mJ. Electrochemical polarization studies in chloride environments and exposure to bacterial culture confirmed that this surface modification has contributed to enhanced corrosion resistance and antibacterial activity. Thus, by tailoring the wettability, surface roughness and texture; nanosecond pulsed laser texturing approach succeeded in imparting desirable properties for cooling water system materials.


Laser texturing Stainless steel Anti-bacterial Corrosion 



Authors are thankful to Ms. Rashmi Singh for SEM examination and Mr. Ashok Kumar for XRD measurements.


  1. 1.
    Knetsch, M.L.W., Koole, L.H.: New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers. 3(1), 340–366 (2011)CrossRefGoogle Scholar
  2. 2.
    Cheng, G., Zhang, Z., Chen, S., Bryers, J.D., Jiang, S.: Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 28(29), 4192–4199 (2007)CrossRefGoogle Scholar
  3. 3.
    Kenawy, E.-R., Worley, S.D., Broughton, R.: The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules. 8(5), 1359–1384 (2007)CrossRefGoogle Scholar
  4. 4.
    Patil, D., Aravindan, S., Wasson, M.K., Vivekanandan, P., Rao, P.V.: Fast fabrication of Superhydrophobic titanium alloy as antibacterial surface using nanosecond laser texturing. J. Micro. Nano-Manuf. 6(1), 011002 (2018)CrossRefGoogle Scholar
  5. 5.
    Feng, L., Zhang, Z.Y., Mai, Z.H., Ma, Y.M., Liu, B.Q., Jiang, L., Zhu, D.B.: A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew. Chem. Int. Ed. 43(15), 2012–2014 (2004)CrossRefGoogle Scholar
  6. 6.
    Jiang, L., Zhao, Y., Zhai, J.: A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed. 43(33), 4338–4341 (2004)CrossRefGoogle Scholar
  7. 7.
    Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., Watanabe, T.: Effects of the surface roughness on sliding angles of water droplets on Superhydrophobic surfaces. Langmuir. 16(13), 5754–5760 (2000)CrossRefGoogle Scholar
  8. 8.
    Feng, B.L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., Song, Y.L., Liu, B.Q., Jiang, L., Zhu, D.B.: Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14(24), 1857–1860 (2002)CrossRefGoogle Scholar
  9. 9.
    Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. A. 95, 65–87 (1805)CrossRefGoogle Scholar
  10. 10.
    Tordeux, J., Bico, C., Quere, D.: Rough wetting. Europhys. Lett. 55(2), 214–220 (2001)CrossRefGoogle Scholar
  11. 11.
    Jiang, L., Wang, R., Yang, B., Li, T.J., Tryk, D.A., Fujishima, A., Hashimoto, K., Zhu, D.B.: Binary cooperative complementary nanoscale interfacial materials. Pure Appl. Chem. 72(1–2), 73–81 (2000)CrossRefGoogle Scholar
  12. 12.
    Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988–994 (1936)CrossRefGoogle Scholar
  13. 13.
    Ke, S., Yang, H., Xue, W., He, A., Zhu, D., Wenwen, L., Kenneth, A., Yu, C.: Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. Appl. Surf. Sci. 436, 263–267 (2018)CrossRefGoogle Scholar
  14. 14.
    Chiara, D.G., Valentina, F., Gökhan, D.A., Elena, T., Gabriele, C., Barbara, P.: Laser micro-polishing of stainless steel for antibacterial surface applications. Procedia CIRP. 49, 88–93 (2016)CrossRefGoogle Scholar
  15. 15.
    Trdan, U., Hocevar, M., Gregorcic, P.: Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros. Sci. 123, 21–26 (2017)CrossRefGoogle Scholar
  16. 16.
    Rafieazad, M., Jaffer, J.A., Cui, C., Xili, D., Nasiri, A.: Nanosecond Laser Fabrication of Hydrophobic Stainless Steel Surfaces: The Impact on Microstructure and Corrosion Resistance. Materials. 11, 1577 (2018)CrossRefGoogle Scholar
  17. 17.
    Gamaly, E.G.: The physics of ultra-short laser interaction with solids at non- relativistic intensities. Phys. Rep. 508, 91–243 (2011)CrossRefGoogle Scholar
  18. 18.
    Suryanarayana C. and Norton M. Grant: X-ray diffraction A Practical Approach, New York, (1998)Google Scholar
  19. 19.
    George, R.P., Muraleedharan, P., Sreekumari, K.R., Khatak, H.S.: Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. Biofouling. 19(1), 1–8 (2003)CrossRefGoogle Scholar
  20. 20.
    Anandkumar, B., George, R.P., Tamilvani, S., Padhy, N., Mudali, U.K.: Studies on microbiologically influenced corrosion of SS304 by a novel manganese oxidizer, Bacillus flexus. Biofouling. 27(6), 675–683 (2011)CrossRefGoogle Scholar
  21. 21.
    APHA, Standard Methods for the Examination of Water and Wastewater, fourteenth ed., American Public Health Association USA. (1989)Google Scholar
  22. 22.
    Hobbie, J.E., Daley, R.H., Jasper, S.: Use of nuclepore for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33(5), 1225–1228 (1977)Google Scholar
  23. 23.
    Mah, T.-F.C., O’Toole, G.A.: Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001)CrossRefGoogle Scholar
  24. 24.
    Choubey, A., Singh, A., Modi, M.H., Upadhyaya, B.N., Lodha, G.S., Oak, S.M.: Study on effective cleaning of gold layer from fused silica mirrors using nanosecond pulsed Nd:YAG laser. Appl. Opt. 52(31), 7540–7548 (2013)CrossRefGoogle Scholar
  25. 25.
    Tam, A.C., Leung, W.P., Zapka, W., Ziemlich, W.: Laser cleaning techniques for removal of surface particulates. J. Appl. Phys. 71(7), 3515–3523 (1992)CrossRefGoogle Scholar
  26. 26.
    Boinovich, L.B., Emelyanenko, A.M., Modestov, A.D., Domantovsky, A.G., Emelyanenko, K.A.: Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment. ACS Appl. Mater. Interfaces. 7(34), 19500–19508 (2015)CrossRefGoogle Scholar
  27. 27.
    Guoping, F., Cheng, Y., Wang, S.-Y., Borca-Tasciuc Diana, A., Worobo Randy, W., Moraru Carmen, I.: Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? NPJ Biofilms Microbiomes. 1, 15022 (2015)CrossRefGoogle Scholar
  28. 28.
    Gopal, J., Tata, B.V.R., George, R.P., Muraleedharan, P., Dayal, R.K.: Biofouling control of titanium by microroughness reduction. Surf. Eng. 24(6), 447–451 (2008)CrossRefGoogle Scholar
  29. 29.
    Bagherifard, S., Hickey, D.J., de Luca, A.C., Malheiro, V.N., Markaki, A.E., Guagliano, M., Webster, T.J.: The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials. 73, 185–197 (2015)CrossRefGoogle Scholar
  30. 30.
    Kathiresan, S., Mohan, B.: In-vitro bacterial adhesion study on stainless steel 316L subjected to magneto rheological abrasive flow finishing. Biomed. Res. 28(7), 3169–3175 (2017)Google Scholar
  31. 31.
    Perera-Costa, D., Bruque, J.M., González-Martín, M.L., Gómez-García, A.C., Vadillo-Rodríguez, V.: Studying the Influence of Surface Topography on Bacterial Adhesion using Spatially Organized Microtopographic Surface Patterns. Langmuir. 30(16), 4633–4641 (2014)CrossRefGoogle Scholar
  32. 32.
    Cheng, Y.T.: Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86(14), 144101 (2005)CrossRefGoogle Scholar
  33. 33.
    Pechook, S., Sudakov, K., Polishchuk, I., Ostrova, I., Zakin, V., Pokroy, B., Shemesh, M.: Bioinspired passive anti-biofouling surfaces preventing biofilm formation. J. Mater. Chem. B. 3(7), 1371–1378 (2015)CrossRefGoogle Scholar
  34. 34.
    Michael, N., Bhushan, B.: Hierarchical roughness makes superhydrophobic states stable. Microelectron. Eng. 84(3), 382–386 (2007)CrossRefGoogle Scholar
  35. 35.
    Nosonovsky, M., Bhushan, B.: Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy. 107(10-11), 969–979 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ram Kishor Gupta
    • 1
    Email author
  • B. Anandkumar
    • 2
  • Ambar Choubey
    • 1
  • R. P. George
    • 2
  • P. Ganesh
    • 1
  • B. N. Upadhyaya
    • 1
  • John Philip
    • 2
  • K. S. Bindra
    • 1
  • R. Kaul
    • 1
  1. 1.Raja Ramanna Centre for Advanced TechnologyIndoreIndia
  2. 2.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations