Advertisement

Lasers in Manufacturing and Materials Processing

, Volume 6, Issue 3, pp 247–262 | Cite as

Additive Manufacturing of WC-Co Cutting Tools for Gear Production

  • A. Fortunato
  • G. Valli
  • Erica LiveraniEmail author
  • A. Ascari
Article
  • 20 Downloads

Abstract

This article presents results relating to the production of a WC-Co gear cutting tool via selective laser melting (SLM). The influence of powder grain geometry and chemical composition on SLM process outcomes are firstly investigated by producing and testing simple cylindrical specimens, from which optimal process parameters and scanning strategies are establish for both the component itself and supporting structures. These parameters are then utilised to produce a real cutting tool that is subsequently employed for internal automotive gear fabrication.

Keywords

Selective laser melting (SLM) Additive manufacturing WC-co cutting tools 

Notes

Acknowledgements

The authors kindly acknowledge the support of Samputensili Cutting Tools and, in particular, Dr. Ceglia and Eng. Iurisci.

References

  1. 1.
    Schmidt, M., Merklein, M., Bourell, D., Dimitrov, D., Hausotte, T., Wegener, K., Overmeyer, L., Vollertsen, F., Gideon, N., Levy, N.G.: Laser based additive manufacturing in industry and academia. CIRP Ann. 66(2), 561–583 (2017)CrossRefGoogle Scholar
  2. 2.
    Bourell, D., Kruth, J.P., Leu, M., Levy, G., Rosen, D., Beese, M.A., Clare, A.: Materials for additive manufacturing. CIRP Ann. 66(2), 659–681 (2017)CrossRefGoogle Scholar
  3. 3.
    Kruth, J.P., Wang, X.C., Laoui, T., Froyen, L.: Lasers and materials in selective laser sintering. Assembly Automation. 23(4), 357–371 (2003)CrossRefGoogle Scholar
  4. 4.
    Kruth, J.P., Mercelis, P., Vaerenbergh, J.V., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 11(1), 26–36 (2005)CrossRefGoogle Scholar
  5. 5.
    Kruth, J.P., Levy, G., Klocke, F., Childs, T.H.C.: Consolidation phenomena in laser and powderbed based layered manufacturing. CIRP Ann Manuf Technol. 56(2), 730–759 (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, X.C., Laoui, T., Bonse, J., Kruth, J.P., Lauwers, B., Froyen, L.: Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation. The International Journal of Advanced Manufacturing Technology 19, pp. 351–357. Springer, London (2002)Google Scholar
  7. 7.
    Kumar, S.: Manufacturing of WC–co moulds using SLS machine. J Mater Process Technol. 209, (2008) S. 3840 - 3848Google Scholar
  8. 8.
    Uhlmann, E.; Bergmann, A.; Gridin, W.: Studie zur Verarbeitung von Wolframkarbid-Kobalt für die additive Fertigung von innenkonturierten Werkzeugen. In: 7. Berliner Runde Neue Konzepte für Werkzeugmaschinen 2012. Begleitband. Berlin: Fraunhofer IPK. 2012, p. 209–227Google Scholar
  9. 9.
    Gläser, T.: Untersuchungen zum Lasersintern von Wolframkarbid- Kobalt. Er-gebnisse aus der Produktionstechnik. Hrsg.: Klocke F. Aachen: Apprimus, 2010Google Scholar
  10. 10.
    Ott, M.: Multimaterialverarbeitung bei der additiven strahl- und pulverbettbasierten Fertigung. München, Technischen Universität München, Diss, München: Herbert Utz, 2012Google Scholar
  11. 11.
    N.N.: Generieren und Fügen von SLM-Bauteilen aus Hartmetall. Schlussbericht der Forschungsstellen TU Clausthal, Institut für Schweißtechnik und Trennende Fertigungsverfahren (ISAF) und BIAS, Bremer Institut für angewandte Strahltechnik (BIAS). 2013Google Scholar
  12. 12.
    Uhlmann, E., Bergmann, A., Gridin, W.: Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. Procedia CIRP. 35, 8–15 (2015)CrossRefGoogle Scholar
  13. 13.
    Cavaleiro, A.J., Fernandes, C.M., Farinha, A.R., Gestel, C.V., Jhabvala, J., Boillat, E., Senos, A.M.R., Vieira, M.T.: The role of nanocrystalline binder metallic coating into WC after additive manufacturing. Appl Surf Sci. 427, 131–138 (2018)CrossRefGoogle Scholar
  14. 14.
    Uhlmann, E., Bergmann, A., Boltz, R.: Manufacturing of carbide tools. Procedia Manufacturing. 21, 765–773 (2018)CrossRefGoogle Scholar
  15. 15.
    Kruth, J.P., Levy, G., Klocke, F., Childs, T.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. 56(2), 730–759 (2007)CrossRefGoogle Scholar
  16. 16.
    Li, C.W., Chang, K.C., Yeh, A.C., Yeh, J.W., Lin, S.J.: Microstructure characterization of cemented carbide fabricated by selective laser melting process. Int J Refract Met Hard Mater. 75, 225–233 (2018)CrossRefGoogle Scholar
  17. 17.
    Kumar, S.: Process chain development for additive manufacturing of cemented carbide. J Manuf Process. 34, 121–130 (2018)CrossRefGoogle Scholar
  18. 18.
    Koopman, M., Fang, Z.Z., Wang, X., Mehrotra, P.K., Properties and Selection of Cemented Carbides, Powder Metallurgy, Vol 7, ASM Handbook, ASM International, 2015, 705–710Google Scholar
  19. 19.
    Lavery, N.P., Cherry, J., Mehmood, S., Davies, H., Girling, B., Sackett, E., Brown, G.R., Sienz, J.: Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion. Mater Sci Eng A. 693, 186–213 (2017)CrossRefGoogle Scholar
  20. 20.
    Han, Q., Mertens, R., Montero-Sistiaga, M.L., Yang, S., Setchi, R., Vanmeensel, K., Hooreweder, B.V., Evans, S.L., Fan, H.: Laser powder bed fusion of Hastelloy X: effects of hot isostatic pressing and the hot cracking mechanism. Mater Sci Eng A. 732, 228–239 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Fortunato
    • 1
  • G. Valli
    • 1
  • Erica Liverani
    • 1
    Email author
  • A. Ascari
    • 1
  1. 1.Dipartimento Ingegneria Industriale (DIN)Università̀ di BolognaBolognaItaly

Personalised recommendations