Investigations on the Interplay Between Focusing and Absorption in Absorber-Free Laser Transmission Welding of Plastics

  • Viktor Mamuschkin
  • Mirko AdenEmail author
  • Alexander Olowinsky



Lab-on-a-chip devices, where small channels and reaction chambers have to be covered with a sealing lid, laser beam welding has already been proven to show considerable potential for standard material combinations. To avoid absorbing additives, the wavelength of the laser has to fit the absorption bands of the polymers. For it to achieve a localized weld seam, the laser beam has to be strongly focused.


To achieve the desired temperature distribution, we establish and discuss the heat rate generated by a focused beam as a function of the absorption coefficient and the Rayleigh length. Thermal simulation of the weld process reveals the dependence of the temperature on Rayleigh length and absorption coefficient. Experiments were carried out with a tunable laser source emitting between 700 and 1000 nm on polycarbonate samples doped with Lumogen 788 dye. Microtome cuts of the welded samples reveal the dimensions of the heat-affected zone and, therefore, of the seam.


Experimental and simulation results show that for typical welding conditions a localized seam inside a sample can be achieved with an appropriate focusing of the laser beam and tuning of the wavelength. The dimensions of the heat-affected zone decrease as absorption coefficient decreases and welding velocity increases. The discussion of the functional dependence of the heat rate on absorption coefficient and Rayleigh length shows that Rayleigh length and sample thickness have to be smaller than the optical penetration depth.


Laser-transmission welding Absorber free Wavelength Lumogen 788 Thermal simulation 



The investigations presented here were carried out as part of the research project “AFRELAS” funded by AiF, the German Federation of Industrial Research Associations to whom we would like to express our special gratitude. Particular thanks go to the company Treffert GmbH & Co. KG, especially to Dr. Sibylle Glaser, for providing the specimen material.


  1. 1.
    N.N., Microfluidic Devices Market Overview, 2018, Accessed 05 Mar 2019
  2. 2.
    D. Bonefeld, Eigenspannungen, Spaltüberbrückung und Strahloszillation beim Laserdurchstrahlschweißen, Schriftenreihe / Institut für Polymere Materialien und Prozesse. Universität Paderborn 2012,1, Shaker, Aachen, 2012Google Scholar
  3. 3.
    Boehm, A, J, laser transmission welding of plastics in medical device manufacturing − how to choose the right laser additive. Proceedings of the 2nd international conference on joining plastics, London 2006 (2006)Google Scholar
  4. 4.
    T. Ebert, Den Durchblick behalten-Transparente Kunststoffe mit Laser fügen. Kunststoffe (1999) 58–60Google Scholar
  5. 5.
    P. Laakso, Ruotsalainen, S, G. Otto, Olowinsky, A, V. Kujanpää, Butt welding of transparent polyamide (PA11) with 1.94 μm fiber laser. Proceedings of the 32nd International Congress on Applications of Lasers & Electro-Optics (ICALEO (2013) 175–180Google Scholar
  6. 6.
    Mingareev, I., Weirauch, F., Olowinsky, A., Shah, L., Kadwani, P., Richardson, M.: Welding of polymers using a 2μm thulium fiber laser. Opt Laser Technol. 44(7), 2095–2099 (2012)CrossRefGoogle Scholar
  7. 7.
    Mamuschkin, V., Olowinsky, A., van der Straeten, K., Engelmann, C.: Laser transmission welding of absorber-free thermoplastics using dynamic beam superposition. Laser-based Micro- and Nanoprocessing IXProc SPIE. (2015)Google Scholar
  8. 8.
    Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons, New York (1975)zbMATHGoogle Scholar
  9. 9.
    Siegman, A.E.: LASERS, University Science Books. Sausalito, California (1986)Google Scholar
  10. 10.
    Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 45(11), 8185–8189 (1992)CrossRefGoogle Scholar
  11. 11.
    Erikson, W.L., Singh, S.: Polarization properties of Maxwell-Gaussian laser beams. Phys Rev E. 49(6), 5778–7786 (1994)CrossRefGoogle Scholar
  12. 12.
    Guizar-Sicairos, M., Gutiérrez-Vega, J.C.: Propagation of Helmholtz-gauss beams in absorbing and gain media. J Opt Soc Am A. 23(8), 1994 (2006)CrossRefGoogle Scholar
  13. 13.
    Rauschenberger, J., Vogler, D., Raab, C., Gubler, U.: In: Klotzbach, U., Washio, K., Arnold, C.B. (eds.) Diffractive Beam Shaping for Enhanced Laser Polymer Welding, 935110. SPIE (2015)Google Scholar
  14. 14.
    Aden, M.: Influence of the laser-beam distribution on the seam dimensions for laser-transmission welding: a simulative approach. Lasers Manuf Mater Process. 3(2), 100–110 (2016)CrossRefGoogle Scholar
  15. 15.
    Eichler, J., Dünkel, L., Eppich, B.: Die Strahlqualität von Lasern – Wie bestimmt man Beugungsmaßzahl und Strahldurchmesser in der Praxis? LTJ. 1(2), 63–66 (2004)CrossRefGoogle Scholar
  16. 16.
    Siegman, A.E.: High-power laser beams: defining, measuring and optimizing transverse beam quality. Proc SPIE. 758–765 (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair for Laser Technology, RWTH Aachen UniversityAachenGermany
  2. 2.Fraunhofer Institute for Laser TechnologyAachenGermany

Personalised recommendations