Advertisement

Influence of the Real Geometry of the Laser Cut Front on the Absorbed Intensity and the Gas Flow

  • Oliver BocksrockerEmail author
  • Peter Berger
  • Florian Fetzer
  • Volker Rominger
  • Thomas Graf
Article

Abstract

The numerical investigations on experimentally determined cut front geometries presented in this paper show that the absorbed intensity reacts more sensitively to small local changes of the angle of the cut front than the gas velocity and the pressure. It is also found that the absorbed intensities near the top and the bottom of the cut front increase significantly when the initially regular process at high cutting speeds turns into the regime with interrupted striation patterns on the surface of the cutting edge.

Keywords

Laser cutting Gas flow Absorbed intensity Interrupted striations 

Notes

Acknowledgements

The authors would like to thank the Graduate School of Excellence advanced Manufacturing Engineering (GSaME) of the University of Stuttgart for its support of this research. In addition, we would like to thank the company TRUMPF, namely Dr. Tobias Häcker, who supported this work with numerical calculations.

References

  1. 1.
    Wandera, C., Kujanpää, V.: Optimization of parameters for fibre laser cutting of a 10 mm stainless steel plate. Proceedings of the Institution of Mechanical Engineers, Part B. J Eng Manuf. 225(5), 641–649 (2011).  https://doi.org/10.1177/2041297510394078
  2. 2.
    Scintilla, L.D., Tricarico, L., Mahrle, A., Wetzig, A., Beyer, E.: A comparative study of cut front profiles and absorptivity behavior for disk and CO2 laser beam inert gas fusion cutting. J. Laser Appl. 24(5), 52006 (2012)CrossRefGoogle Scholar
  3. 3.
    Petring, D.: Virtual laser cutting simulation for real parameter optimization. Proceedings of JLPS 84th Laser Materials Processing Conference. 11–20 (2016)Google Scholar
  4. 4.
    Wandera, C., Salminen, A., Kujanpaa, V.: Inert gas cutting of thick-section stainless steel and medium-section aluminum using a high power fiber laser. J Laser Appl. 21(3), 154–161 (2009)Google Scholar
  5. 5.
    Sparkes, M., Gross, M., Celotto, S., Zhang, T., O’Neill, W.: Practical and theoretical investigations into inert gas cutting of 304 stainless steel using a high brightness fiber laser. J Laser Appl. 20(1), 59–67 (2008)CrossRefGoogle Scholar
  6. 6.
    Olsen, F.O.: An evaluation of the cutting potential of different types of high power lasers ICALEO 2006, 401 (2006).  https://doi.org/10.2351/1.5060824
  7. 7.
    Ozaki, H., Le, M.Q., Kawakami, H., Suzuki, J., Uemura, Y., Doi, Y., Mizutani, M., Kawahito, Y.: Real-time observation of laser cutting fronts by x-ray transmission. J. Mater. Process. Technol. (2016)Google Scholar
  8. 8.
    Petring, D., Molitor, T., Schneider, F., Wolf, N.: Diagnostics, modeling and simulation: three keys towards mastering the cutting process with Fiber, disk and diode lasers. Phys Procedia. 39, 186–196 (2012)CrossRefGoogle Scholar
  9. 9.
    Bocksrocker, O., Berger, P., Hesse, T., Boley, M., Graf, T.: Measurement of the laser cut front geometry. Proceedings of the 8th International WLT Conference on Lasers in Manufacturing LiM, München, vol. 22. - 25.06.2015, Germany (2015)Google Scholar
  10. 10.
    Olsen, F.O.: Fundamental mechanisms of cutting front formation in laser cutting. In: Beyer, E., Cantello, M., La Rocca, A.V., Laude, L.D., Olsen, F.O., Sepold, G. (eds.). SPIE, p. 402 (1994)Google Scholar
  11. 11.
    Kovalev, O.B., Yudin, P.V., Zaitsev, A.V.: Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl Math Model. 33(9), 3730–3745 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Aggoune, S., Amara, E.H., Debiane, M.: Effects of the velocity and the nature of the inert gas on the stainless steel laser cut quality. Tech Science Press. 61–75 (2013)Google Scholar
  13. 13.
    Petring, D.: Anwendungsorientierte Modellierung des Laserstrahlschneidens zur rechnergestützten Prozeßoptimierung. Zugl.: Aachen, Techn. Hochsch., Diss. 1994, Als Ms. gedr, Shaker, Aachen (1995)Google Scholar
  14. 14.
    Amara, E.H., Kheloufi, K., Tamsaout, T., Fabbro, R., Hirano, K.: Numerical investigations on high-power laser cutting of metals. Appl Phys A Mater Sci Process. 119(4), 1245–1260 (2015)CrossRefGoogle Scholar
  15. 15.
    Hirano, K., Fabbro, R., Muller, M.: Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure. J Phys D Appl Phys. 44(43), 435402 (2011)CrossRefGoogle Scholar
  16. 16.
    Luca, G., Tomesani, L.: Prediction of melt geometry in laser cutting. Appl Surf Sci. 208–209, 142–147 (2003).  https://doi.org/10.1016/S0169-4332(02)01353-3
  17. 17.
    Tani, G., Tomesani, L., Campana, G., Fortunato, A.: Quality factors assessed by analytical modelling in laser cutting. Thin Solid Films. 453-454, 486–491 (2004)CrossRefGoogle Scholar
  18. 18.
    Bocksrocker, O., Berger, P., Regaard, B., Rominger, V., Graf, T.: Characterization of the melt flow direction and cut front geometry in oxygen cutting with a solid state laser. J. Laser Appl. 29(2), 22202 (2017)CrossRefGoogle Scholar
  19. 19.
    Thombansen, U., Hermanns, T., Stoyanov, S.: Setup and maintenance of manufacturing quality in CO2 laser cutting, 2nd ICRM 2014. International Conference on Ramp-Up Management. 20, 98–102 (2014)Google Scholar
  20. 20.
    Molitor, T., Gillner, A.: DE 10 2014 000 330 B3 2015.03.12 (2014)Google Scholar
  21. 21.
    Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: The finite volume method, second. ed., Pearson/Prentice Hall, Harlow (2010)Google Scholar
  22. 22.
    Durst, F.: Fluid mechanics: an introduction to the theory of fluid flows. Springer-Verlag Berlin Heidelberg, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Langeheinecke, K., Jany, P., Thieleke, G. (eds.). Thermodynamik für Ingenieure, seventh., verbesserte und ergänzte Auflage, Vieweg+Teubner Verlag / GWV Fachverlage GmbH Wiesbaden, Wiesbaden (2008)Google Scholar
  24. 24.
    Michalowski, A.: Untersuchungen zur Mikrobearbeitung von Stahl mit ultrakurzen Laserpulsen (in German): Dissertation, Herbert Utz Verlag (2014)Google Scholar
  25. 25.
    Qin, Y., Michalowski, A., Weber, R., Yang, S., Graf, T., Ni, X.: Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference. Opt Express. 20(24), 26606–26617 (2012)CrossRefGoogle Scholar
  26. 26.
    Dausinger, F.: Strahlwerkzeug Laser: Energieeinkopplung und Prozeßeffektivität: Laser in der Materialbearbeitung, Forschungsberichte des IFSW. Habilitationsschrift (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Excellence Advanced Manufacturing Engineering (GSaME)University of StuttgartStuttgartGermany
  2. 2.Institut für Strahlwerkzeuge (IFSW)University of StuttgartStuttgartGermany
  3. 3.TRUMPF Werkzeugmaschinen GmbH + Co.KGDitzingenGermany

Personalised recommendations