Lasers in Manufacturing and Materials Processing

, Volume 5, Issue 4, pp 439–457 | Cite as

Material Characterisation with New Indentation Technique Based on Laser-Induced Shockwaves

  • Tobias CzotscherEmail author


Conventional material development of new compositions is expensive and time consuming. Thus, for material characterisation there is a demand to enable high through-put experimentation to analyse and develop new materials in a short time. In this context, a new experimentation method is presented, which is based on TEA CO2 laser-induced shockwaves. First, plasma is created with a nanosecond pulsed TEA CO2 laser on top of a spherical indenter. Further interactions of the plasma with the high intensity laser beam result in a shockwave. The pressure of the shockwave is used to force the indenter penetrate inside the test material. Indentations are created on different aluminium alloys and correlated with hardness. The influence of environmental conditions, indenter material and diameter are investigated. Additionally, an energy model is introduced, which describes the possible indentation strain energy in dependence of the indenter diameter and the shockwave energy transferred to the indenter. The experiments reveal that smaller indenter diameters are recommendable for higher impact efficiencies. Best indentation results are achieved in terms of reproducibility and depth with a 3 mm indenter.


Measuring instrument Hardness dynamics 



Financial support of the subproject D02 “Laser induced hardness measurements” of the Collaborative Research Centre SFB1232 by the German Research Foundation (DFG) is gratefully acknowledged.


  1. 1.
    Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H.: Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci. 13(6), 579–633 (2011). CrossRefGoogle Scholar
  2. 2.
    Brech, F., Cross, L.: Optical microemission stimulated by a ruby MASER. Appl Spectrosc. 16, 59 (1962)Google Scholar
  3. 3.
    Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser-produced plasma in confined geometry. J Appl Phys. 68(2), 775–784 (1990). CrossRefGoogle Scholar
  4. 4.
    Veenaas, S., Wielage, H., Vollertsen, F.: Joining by laser shock forming: realization and acting pressures. Prod Eng. 8(3), 283–290 (2013). CrossRefGoogle Scholar
  5. 5.
    Miziolek, A., Palleschi, V., Schechter, I.: Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge Univ. Press., 1–15 (2006)Google Scholar
  6. 6.
    Bergmann, H.W., Hügel, H.: Modellierung und Diagnostik des Abtragsprozesses. Strahltechnik Band. 6, 35–44 (1998)Google Scholar
  7. 7.
    Barchukov, A.I., Bunkin, F.V., Konov, V.I., Lyubin, A.A.: Investigation of low-threshold gas breakdown near solid targets by CO2 laser radiation. Sov Phys. 39, 42–45 (1974)Google Scholar
  8. 8.
    Marpaung, A.M., Hedwig, R., Pardede, M., Lie, T.J., Tjia, M.O., Kagawa, K., Kurniawan, H.: Shock wave plasma induced by TEA CO2 laser bombardment on glass samples at high pressures. Spectrochim Acta, Part B 55(10), 1591–1599 (2000). CrossRefGoogle Scholar
  9. 9.
    Walter, D., Michalowski, A., Gauch, R., Dausinger, F.: Monitoring of the micro-drilling process by means of laser-induced shock waves. Proc Fourth Intl WLT-Conference Lasers Manuf, 557–562 (2007)Google Scholar
  10. 10.
    Vollertsen, F., Niehoff, H.S., Wielage, H.: On the acting pressure in laser deep drawing. Prod Eng. 3(1), 1–8 (2009). CrossRefGoogle Scholar
  11. 11.
    Czotscher, T., Vollertsen, F.: Process stability of laser induced plasma for hardness measurements. In: Proceedings of the 9th International WLT-Conference on Lasers in Manufacturing. Munich, Germany, 1–7 (2017)Google Scholar
  12. 12.
    Czotscher, T., Veenaas, S., Vollertsen, F.: Possibilities to characterise laser induced shockwaves. Journal for Technology of Plasticity. (2017).
  13. 13.
    Czotscher, T.: Analysis of TEA-CO2-laser-induced plasma to establish a new measurement technique. J Laser Appl. 30(3), 032604 (2018). CrossRefGoogle Scholar
  14. 14.
    Radziemski, L.J., Cremers, D.A., Niemczyk, T.M.: Measurement of the properties of a CO2 laser induced air-plasma by double floating probe and spectroscopic techniques. Spectrochim Acta B. 40(3), 517–525 (1985). CrossRefGoogle Scholar
  15. 15.
    Czotscher, T., Vollertsen, F.: Proceedings of the 8th International Conference on High Speed Forming (ICHSF, Columbus, OH) (2018)
  16. 16.
    Johnson, K.L.: Contact Mechanics. J Am Chem Soc. 37, 1–17 (1985)Google Scholar
  17. 17.
    Pawelski, H., Pawelski, O.: Technische Plastomechanik – Kompendium und Übungen. Verlag Stahleisen, Düsseldorf (2000)Google Scholar
  18. 18.
    Hollomon, J.H.: Tensile deformation. Met Technoloogy, 268–290 (1945)Google Scholar
  19. 19.
    Grüning, K.: Grundlagen der Umformtechnik. In: Umformtechnik. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig, 4–16 (1986)Google Scholar
  20. 20.
    Popov, V.L.: Kontaktmechanik und Reibung. Springer-Verlag, Berlin (2009)zbMATHGoogle Scholar
  21. 21.
    Trauth, D., Klocke, F., Schongen, F., Shirobokov, A.: Analyse und Modellierung der Schlagkraft beim elektro - dynamischen Festklopfen zur kraftbasierten Prozessauslegung. Verlag Meisenbach GmbH, 1–8 (2013)Google Scholar
  22. 22.
    Zel’dovich, Ya B., Raizer, Yu P.: Physics of shock waves and high-temperature hydrodynamic phenomena. ACADEMIC PRESS, (1967)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BIAS - Bremer Institut für angewandte Strahltechnik GmbHBremenGermany

Personalised recommendations