Advertisement

Lasers in Manufacturing and Materials Processing

, Volume 5, Issue 3, pp 237–247 | Cite as

Laser Folding in a Roll-to-Roll Manufacturing Process

  • Nathan Lazarus
  • Gabriel L. Smith
Article
  • 74 Downloads

Abstract

Origami-inspired design allows three dimensional systems to be made from two dimensional patterns typically far easier to create. We demonstrate a self-folding roll-to-roll process based on laser machining and folding. Using a low cost laser cutter, metal is cut, optically folded into 3D shapes and removed from an unpatterned roll of thin metal sheeting, all without manual handling. Folding is done through laser forming, localized laser heating to cause expansion and contraction for bending. Two different laser forming mechanisms, based on different temperature distributions within the workpiece, are characterized and demonstrated to allow both up and down bending using only the laser itself. These mechanisms are then used to prototype a series of parts using a roll-to-roll setup, with individual parts taken from a blank sheet of metal to a finished folded part in minutes. Our roll-to-roll laser origami approach is a major advance in production technology, allowing the use of a widely available 2D machine tool to create repeated custom 3D parts without human intervention.

Keywords

Laser forming Laser material processing Self-folding Origami 

References

  1. 1.
    Whitney, J.P., Sreetharan, P.S., Ma, K.Y., Wood, R.J.: Pop-up book MEMS. J. Micromech. Microeng. 21, 115021 (2011)CrossRefGoogle Scholar
  2. 2.
    Felton, S., Tolley, M., Demaine, E., Rus, D., Wood, R.: A method for building self-folding machines. Science. 345, 644–646 (2014)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Genzer, J., Dickey, M.D.: 2D or not 2D: shape-programming polymer sheets. Prog. Polym. Sci. 52, 79–106 (2016)CrossRefGoogle Scholar
  4. 4.
    Lee, Y., Lee, H., Hwang, T., Lee, J., Cho, M.: Sequential folding using light-activated polystyrene sheet. Sci. Rep. 5, 16544 (2015)CrossRefGoogle Scholar
  5. 5.
    Mueller, S., Kruck, B., Baudisch, P.: LaserOrigami: laser-cutting 3D objects. Proc. CHI. 2013, 2585–2592 (2013)Google Scholar
  6. 6.
    Liu, Y., Miskiewicz, M., Escuti, M.J., Genzer, J., Dickey, M.D.: Three-dimensional folding of pre-strained polymer sheets via absorption of laser light. J. Appl. Phys. 115, 204911 (2014)CrossRefGoogle Scholar
  7. 7.
    Pique, A., Mathews, S.A., Charipar, N.A., Birnbaum, A.J.: Laser origami: a new technique for assembling 3D microstructures. Proc. SPIE. 8244, (2012)Google Scholar
  8. 8.
    Paramasivan, K., Das, S., Marimuthu, S., Misra, D.: Experimental and numerical investigation on micro-bending of AISI 304 sheet metal using a low power nanosecond laser. Lasers Manuf. Mater. Process. 5, 92-112 (2018)Google Scholar
  9. 9.
    Lazarus, N., Smith, G.L.: Laser forming for complex 3D folding. Adv. Mater. Technol. 2, 1700109 (2017)CrossRefGoogle Scholar
  10. 10.
    Allen, K.J.: Reel to real: prospects for flexible displays. Proc. IEEE. 93, 1394–1399 (2005)CrossRefGoogle Scholar
  11. 11.
    Rogers, J.A., Bao, Z., Makhija, A., Braun, P.: Printing process suitable for reel-to-reel production of high-performance organic transistors. Adv. Mater. 11, 741–745 (1999)CrossRefGoogle Scholar
  12. 12.
    Blankenburg, L., Schultheis, K., Schache, H., Sensfuss, S., Schrodner, M.: Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells. Sol. Energy Mater. Sol. Cells. 93, 476–483 (2009)CrossRefGoogle Scholar
  13. 13.
    Shen, H., Vollertsen, F.: Modelling of laser forming – an review. Comput. Mater. Sci. 46, 834–840 (2009)CrossRefGoogle Scholar
  14. 14.
    Bao, J., Yao, Y.L.: Analysis and prediction of edge effects in laser bending. ASME J. Manuf. Sci. Technol. 123, 53–61 (2001)CrossRefGoogle Scholar
  15. 15.
    Edwardson, S. P.: A study into the 2D and 3D laser forming of metallic components. Ph.D. thesis, University of Liverpool, Liverpool, the United Kingdom (2004)Google Scholar
  16. 16.
    Thomson, G., Pridham, M.S.: 1997, controlled laser forming for rapid prototyping. Rapid Prototyp. J. 3, 137–143 (1997)CrossRefGoogle Scholar
  17. 17.
    Cheng, J., Yao, Y.L.: Process design of laser forming for three-dimensional thin plates. J. Manuf. Sci. Eng. 126, 217–225 (2004)CrossRefGoogle Scholar
  18. 18.
    Esser, G., Schmidt, M., Dirscherl, M.: Laser adjustable actuators for high-accuracy positioning of micro components. Proc. SPIE. 5063, 177–182 (2003)CrossRefGoogle Scholar
  19. 19.
    Wu, D., Zhang, Q., Ma, G., Guo, Y., Guo, D.: Laser bending of brittle materials. Opt. Lasers Eng. 48, 405–410 (2010)CrossRefGoogle Scholar
  20. 20.
    Bak, D.: Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom. 23, 340–345 (2003)CrossRefGoogle Scholar
  21. 21.
    Madsen, K., Sondergaard, M.: Development of a framework for the laser forming process. M.S. thesis, Aalborg University, Aalborg, Denmark (2014)Google Scholar
  22. 22.
    Li, W., Yao, Y.L.: Numerical and experimental study of strain rate effects in laser forming. ASME J Manuf Sci Technol. 122, 445–451 (2000)CrossRefGoogle Scholar
  23. 23.
    Hu, Z., Kovacevic, R., Labudovic, M.: Experimental and numerical modeling of buckling instability of laser sheet forming. Int. J. Adv. Manuf. Technol. 42, 1427–1439 (2002)Google Scholar
  24. 24.
    Bergstrom, D.: The absorption of laser light by rough metal surfaces. Ph.D. thesis, Lulea University of Technology, Lulea, Sweden (2008)Google Scholar
  25. 25.
    Dearden, G., Edwardson, S.P.: Some recent developments in two- and three-dimensional laser forming for ‘macro’ and ‘micro’ applications. J. Opt. A Pure Appl. Opt. 5, S8–S15 (2003)CrossRefGoogle Scholar
  26. 26.
    Marciniak, Z., Duncan, J.L., Hu, S.J.: Bending of sheet. In: Marciniak, Z., Duncan, J.L., Hu, S.J. (eds.) Mechanics of Sheet Metal Forming, pp. 82–107. Butterworth-Heinemann, Woburn (2002)CrossRefGoogle Scholar
  27. 27.
    Lazarus, N., Wilson, A.A., Smith, G.L.: Contactless laser fabrication and propulsion of freely moving structures. Extreme Mech. Lett. 20, 46–50 (2018)CrossRefGoogle Scholar
  28. 28.
    Barrett, T.W., Pizzico, M.C., Levy, B., Nagel, R.L.: 2015, a review of university maker spaces. Proc. ASEE. 2015, (2015)Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.U.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations