Advertisement

A fluctuation theory of communications

  • Bhupendra Nath TiwariEmail author
  • Prem K. Kalra
Regular Paper
  • 2 Downloads

Abstract

(1) In this paper, we investigate fluctuation properties of communication configurations by considering an ensemble of measurements in the space of probabilities. In the limit of a large number of symbols, in a message communicated in a noisy channel, we explore statistical properties of fluctuations by analyzing the critical behavior and geometric invariants at a given pair of true and false probabilities as the model parameters. (2) In the light of the system’s global stability, we examine the long-range statistical correlations, whereby discuss the nature of the underlying interacting/noninteracting domains and associated phase transitions under variations of the model probabilities. (3) Finally, we provide possible directions towards the instrumentation technology and engineering designing, their optimal developments and perspective implications of the intrinsic geometric towards the fluctuation theory understanding of joint configurations, entanglement entropy, generalized measurements, quantum channels in communication systems and simultaneous measurements.

Keywords

Information theory Communication systems Statistical fluctuations Optimization geometry Data compression Noise instabilities 

Notes

Acknowledgements

Bhupendra Nath Tiwari would like to thank the Yukawa Institute for Theoretical Physics at Kyoto University. Discussions during the workshop YITP-T-18-04 “New Frontiers in String Theory 2018” were useful to complete this work. We would like to extend our sincere thanks to anonymous referees whose comments were useful in revising the manuscript.

Compliance with ethical standards

Conflict of interest

There exists no conflict of interest for all participating authors. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). (623–656)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Griffin, E.M.: A First Look at Communication Theory. McGraw-Hill, New York. ISBN-13: 978-0073523927 (2006)Google Scholar
  3. 3.
    Deepu, C.J., Lian, Y.: A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015)CrossRefGoogle Scholar
  4. 4.
    Sayood, K.: Introduction to Data Compression, 5th edn. Morgan Kaufmann, Burlington. ISBN-13: 978-0128094747 (2017)Google Scholar
  5. 5.
    Haeupler, B.: Interactive channel capacity revisited. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 226–235. IEEE, New York (2014)Google Scholar
  6. 6.
    Somekh-Baruch, A.: On achievable rates and error exponents for channels with mismatched decoding. IEEE Trans. Inf. Theory 61(2), 727–740 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, K., Winter, A.: Relative entropy and squashed entanglement. Commun. Math. Phys. 326(1), 63–80 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldstine, H.: The Computer from Pascal to von Neumann. Princeton University Press, Princeton. ISBN 0-691-02367-0 (1980)Google Scholar
  9. 9.
    Van Hove, L.: Léon: Von Neumann’s contributions to quantum theory. Bull. Am. Math. Soc. 64, 95–100 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Witten, E.: A Mini-Introduction To Information Theory. arXiv preprint: arXiv:1805.11965 (2018)
  11. 11.
    Tiwari, B.N., Chandra, V., Banerjee, S.: A Thermodynamic Geometric Study of Complex Entropies: Statistical Fluctuations: Shannon, Renyi, Tsallis, Abe and Structural Configurations. Paperback. ISBN-13: 978-3845420691 (2011)Google Scholar
  12. 12.
    Jencova, A.: Preservation of a quantum Rnyi relative entropy implies existence of a recovery map. J. Phys. A Math. Theor. 50(8), 085303 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bellucci, S., Tiwari, B.N.: State-space correlations and stabilities. Phys. Rev. D 82, 084008 (2010). arXiv:0910.5309v1 [hep-th]CrossRefGoogle Scholar
  14. 14.
    Tiwari, B.N.:, Sur les corrections de la géométrie thermodynamique des trous noirs. Éditions Universitaires Européennes, Germany (2011). ISBN 978-613-1-53539-0. arXiv:0801.4087v2 [hep-th]
  15. 15.
    Bellucci, S., Tiwari, B.N., Gupta, N.: Geometrical methods for power network analysis. In: Springer Briefs in Electrical and Computer Engineering. ISBN 978-3-642-33343-9 (2013)Google Scholar
  16. 16.
    Gupta, N., Tiwari, B.N., Bellucci, S.: Intrinsic geometric analysis of the network reliability and voltage stability. Int. J. Electr. Power Energy Syst. 44(1), 872–879 (2010)CrossRefGoogle Scholar
  17. 17.
    Tiwari, B.N., Adeegbe, J.M., Kuipo Kibindé, J.: Randomized Cunningham Numbers in Cryptography: Randomization Theory, Cryptanalysis, RSA Cryptosystem, Primality Testing, Cunningham Numbers, Optimization theory Paperback. ISBN-13: 978-6139858477 (2018)Google Scholar
  18. 18.
    Tiwari, B.N., Bellucci, S.: Thermodynamic geometry: evolution, correlation and phase transition. In: Physica A: Statistical Mechanics and Its Applications, pp. 390–2074. e-print: arXiv:1010.5148v1 [stat-phys] (2011)
  19. 19.
    Aman, J.E., Bengtsson, I., Pidokrajt, N.: Flat information geometries in black hole thermodynamics. Gen. Relat. Gravit. 38, 1305–1315 (2006). arXiv:gr-qc/0601119v1 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bellucci, S., Tiwari, B.N.: An exact fluctuating 1/2-BPS configuration. JHEP 1005, 023 (2010). arXiv:0910.5314v2 [hep-th]MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Levin, M.S.: System configuration and combinatorial optimization. In: Modular System Design and Evaluation, pp. 89–109. Springer, Cham (2015)Google Scholar
  22. 22.
    Heim, B., Rnnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Qi, F., Guo, B.N.: An inequality involving the gamma and digamma functions. J. Appl. Anal. 22(1), 49–54 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Clarke, B.S., Barron, A.R.: Information-theoretic asymptotics of Bayes methods. IEEE Trans. Inf. Theory 36(3), 453–471 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jorma, R. (ed.): Stochastic Complexity in Statistical Inquiry, vol. 15. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  27. 27.
    Robert, C.: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer, New York (2007)Google Scholar
  28. 28.
    Rissanen, J.J.: Fisher information and stochastic complexity. IEEE Trans. Inf. Theory 42(1), 40–47 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Huang, W., Kechen, Z.: Information-theoretic bounds and approximations in neural population coding. Neural Comput. 30(4), 885–944 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Haussler, D.: Decision theoretic generalizations of the PAC model for neural net and other learning applications. In: The Mathematics of Generalization, pp. 37–116. CRC Press, New York (2018)Google Scholar
  31. 31.
    Tomamichel, M., Masahito, H.: Operational interpretation of Rnyi information measures via composite hypothesis testing against product and Markov distributions. IEEE Trans. Inf. Theory 64(2), 1064–1082 (2018)CrossRefzbMATHGoogle Scholar
  32. 32.
    Tiwari, B.N.: Geometric Perspective of Entropy Function: Embedding, Spectrum and Convexity, LAP Lambert Academic Publishing, Saarbrucken. ISBN-13: 978-3-8454-3178-9. arXiv:1108.4654v2 [hep-th] (2011)
  33. 33.
    von Neumann, J.: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik (Probabilistic theory of quantum mechanics). In: Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse, pp. 245–272 (1927)Google Scholar
  34. 34.
    Timme, N., Alford, W., Flecker, B., Beggs, J.M.: Synergy, redundancy, and multivariate information measures: an experimentalists perspective. J. Comput. Neurosci. 36(2), 119–140 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    The OMEGA\(^{\rm TM}\): HH42A digital thermometer is the most recent addition to a series of instruments based upon our high precision temperature measurement system technology. https://www.omega.com/temperature/pdf/HH42A.pdf. Accessed 5 Sep 2018 (2018)
  36. 36.
    Weinhold, F.: Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 63, 2479 (1975).  https://doi.org/10.1063/1.431689 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Weinhold, F.: Metric geometry of equilibrium thermodynamics. II: Scaling, homogeneity, and generalized Gibbs–Duhem relations. J. Chem. Phys. 63, 2484 (1975)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605–659 (1995). (erratum, 313–313, 68, 1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ruppeiner, G.: Thermodynamic critical fluctuation theory? Phys. Rev. Lett. 50, 287–290 (1983)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608–1613 (1979)CrossRefGoogle Scholar
  41. 41.
    Ruppeiner, G.: New thermodynamic fluctuation theory using path integrals. Phys. Rev. A 27, 1116–1133 (1983)CrossRefGoogle Scholar
  42. 42.
    McMillan, P.F., Stanley, H.E.: Fluid phases: going supercritical. Nat. Phys. 6, 479 (2010)CrossRefGoogle Scholar
  43. 43.
    Simeoni, G.G., et al.: The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nat. Phys. 6, 503 (2010)CrossRefGoogle Scholar
  44. 44.
    Widom, B.: Surface tension of fluids. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 2. Academic Press, London (1972)Google Scholar
  45. 45.
    von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten (Thermodynamics of quantum mechanical quantities). In: Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Mathematisch-Physikalische Klasse, vol. 102, pp. 273–291 (1927)Google Scholar
  46. 46.
    Hsu, C.C., Lin, C.W., Fang, Y., Lin, W.: Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss. J. Sel. Top. Signal Process. 8(3), 377–389 (2014)CrossRefGoogle Scholar
  47. 47.
    Kawahara, N., Nishimura, J., Takeuchi, S.: Phase structure of matrix quantum mechanics at finite temperature. JHEP 0710, 097 (2007).  https://doi.org/10.1088/1126-6708/2007/10/097. arXiv:0706.3517v2 [hep-th]MathSciNetCrossRefGoogle Scholar
  48. 48.
    Lavenda, B.H.: Statistical Physics: A Probabilistic Approach. Courier Dover Publications, New York (2016)zbMATHGoogle Scholar
  49. 49.
    Gross, D.J., Witten, E.: Possible third-order phase transition in the large-\(N\) lattice gauge theory. Phys. Rev. D 21, 446 (1980)CrossRefGoogle Scholar
  50. 50.
    Wadia, S.R.: A Study of \(U(N)\) Lattice Gauge Theory in 2-Dimensions, Report Number: ICTS 2012/13; TIFR/TH/2012-47. arXiv:1212.2906 [hep-th]
  51. 51.
    Kawahara, N., Nishimura, J., Takeuchi, S.: Exact fuzzy sphere thermodynamics in matrix quantum mechanics. JHEP 0705, 091 (2007). arXiv:0704.3183v2 [hep-th]MathSciNetCrossRefGoogle Scholar
  52. 52.
    Hotta, T., Nishimura, J., Tsuchiya, A.: Dynamical aspects of large \(N\) reduced models. Nucl. Phys. B 545, 543–575 (1999). arXiv:hep-th/9811220v2 CrossRefzbMATHGoogle Scholar
  53. 53.
    Tiwari, B.N.: On Generalized Uncertainty Principle: Quantum Gravity, Black Holes, String Theory & Short Distances, Fourier Transformation & Distributions, Discretization. ISBN-13: 978-3846515327 (2011)Google Scholar
  54. 54.
    Santos, J.M., Assuncao, P.A., da Silva Cruz, L.A., Tavora, L.M., Fonseca-Pinto, R., Faria, S.M.: Lossless coding of light field images based on minimum-rate predictors. J. Vis. Commun. Image Represent. 54, 21–30 (2018)CrossRefGoogle Scholar
  55. 55.
    Wilde, M.M., Tomamichel, M., Berta, M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63(3), 1792–1817 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Li, Y., Prasad, S., Chen, W., Yin, C., Han, Z.: An approximate message passing approach for compressive hyperspectral imaging using a simultaneous low-rank and joint-sparsity prior. In: 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–5. IEEE, New York (2016)Google Scholar
  57. 57.
    Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and translation to bridge video and language. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4594–4602 (2016)Google Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.INFN-Laboratori Nazionali di FrascatiFrascatiItaly
  2. 2.University of Information Science and Technology “St. Paul the Apostle”OhridRepublic of Macedonia
  3. 3.Department of Electrical EngineeringDayalbagh Educational InstituteAgraIndia

Personalised recommendations