Geometric phase in open quantum system as a function of its history

  • T. S. Yakovleva
  • A. M. Rostom
  • V. A. TomilinEmail author
  • L. V. Il’ichov
Regular Paper


A general expression for geometric phase in open quantum system is derived in the framework of a previously established operational approach. The system state gains geometric phase during propagation along a chain of Mach–Zehnder interferometers accompanied by acts of information exchange with the environment. Each act represents interaction with an environment element prepared in a standard state and subsequent measurement of its observable. The geometric phase appears to be a function of the system’s history, i.e. of a sequence of measurements outcomes. Numerical calculations of the geometric phase are made for a qubit-like quantum system and that of the environment and controlled phase shift as interaction.


Geometric phase Open quantum systems Mach–Zehnder interferometer 



The research was financially supported by the state order (Project AAAA-A17-117052210003-4, the internal FASO Number 0319-2016-0002) at the Institute of Automation and Electrometry SB RAS.


  1. 1.
    Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. I. General formalism. Ann. Phys. 228, 205 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. Sect. A 44, 247 (1956)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Vladimirsky, V.: DAN USSR 31, 222 (1941). (in Russian) Google Scholar
  5. 5.
    Chruśiński, D., Jamiolkovski, A.: Geometric phase in classical and quantum mechanics. Birkhäuser, Boston (2004)Google Scholar
  6. 6.
    Bohm, A.: The geometric phase in quantum systems. Springer, Berlin (2003)CrossRefGoogle Scholar
  7. 7.
    Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Uhlmann, A.: A gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sjöqvist, E.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000)CrossRefGoogle Scholar
  10. 10.
    Garrison, J.C., Wright, E.M.: Complex geometrical phases for dissipative systems. Phys. Lett. A 128, 177 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Carollo, A.: The quantum trajectory approach to geometric phase for open systems. Mod. Phys. Lett. A 22, 1635 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)CrossRefGoogle Scholar
  13. 13.
    Sjöqvist, E.: On geometric phases for quantum trajectories. Acta Phys. Hung. B Quantum Electron. 26, 195 (2006)CrossRefGoogle Scholar

Copyright information

© Chapman University 2019

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations