Quantum Studies: Mathematics and Foundations

, Volume 4, Issue 4, pp 357–374 | Cite as

Searching for an adequate relation between time and entanglement

  • Davide FiscalettiEmail author
  • Amrit Sorli
Regular Paper


Today, mainstream science considers that the observer and all observed physical phenomena exist in time and space as fundamental physical realities of the universe. Nonetheless, relevant recent research shows that the time measured with clocks is merely a mathematical parameter of material change, i.e. motion which runs in space. In this picture, the existence of past, present and future is merely a mathematical one. EPR paradox is established on the misunderstanding that the observer, the measuring instrument and measured phenomena exist in space and time. In this paper the perspective is introduced that, as regards EPR-type experiments, observer and observed phenomena exist only in space which originates from a fundamental quantum vacuum which is an immediate medium of quantum entanglement.


Space Time Observer Space-time Quantum vacuum Entanglement EPR paradox 


  1. 1.
    Chiou, D.W.: Timeless path integral for relativistic quantum mechanics. Class. Quantum Gravity 30(12), 125004 (2013). arXiv:1009.5436v3 [gr-qc]
  2. 2.
    Palmer, T.N.: The invariant set hypothesis: a new geometric framework for the foundations of quantum theory and the role played by gravity (2009). arXiv:0812.1148
  3. 3.
    Girelli, F., Liberati, S., Sindoni, L.: Is the notion of time really fundamental? Symmetry 3(3), 389–401 (2011). arXiv:0903.4876v1 [gr-qc]
  4. 4.
    Elze, H.-T., Schipper, O.: Time without time: a stochastic clock model. Phys. Rev. D 66, 044020 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Elze, H.-T.: Quantum mechanics and discrete time from “timeless” classical dynamics. Lect. Notes Phys. 633, 196 (2003). arXiv:gr-qc/0307014v1
  6. 6.
    Elze, H.-T.: Emergent discrete time and quantization: relativistic particle with extra dimensions. Phys. Lett. A 310(2–3), 110–118 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Elze, H.-T.: Quantum mechanics emerging from “timeless” classical dynamics (2003). arXiv:quant-ph/0306096
  8. 8.
    Caticha, A.: Entropic dynamics, time and quantum theory. J. Phys. A Math. Theor. 44(22), 225303 (2011). arXiv:1005.2357v3 [quant-ph]
  9. 9.
    Prati, E.: Generalized clocks in timeless canonical formalism. J. Phys. Conf. Ser. 306(1), 012013 (2011)Google Scholar
  10. 10.
    Fiscaletti, D., Sorli, A.: Perspectives of the numerical order of material changes in timeless approaches in physics. Found. Phys. 45(2), 105–133 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Barbour, J., Koslowski, T., Mercati, F.: Identification of a gravitational arrow of time. PRL 113, 181101 (2014)CrossRefGoogle Scholar
  12. 12.
    Krasnikov, S.: Time travel paradox. Phys. Rev. D 65, 064013 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Sfarti, A.: Relativity solution for “Twin paradox”: a comprehensive solution. Indian J. Phys. 86(10), 937–942 (2012)CrossRefGoogle Scholar
  14. 14.
    Sorli, A., Fiscaletti, D., Gregl, T.: New insights into Gödel’s universe without time. Phys. Essays 26(1), 113–115 (2013)CrossRefGoogle Scholar
  15. 15.
    Rohrlich, D., Aharonov, Y.: Cherenkov radiation of superluminal particles. Phys. Rev. A 66, 042102 (2002)CrossRefGoogle Scholar
  16. 16.
    Bell, J.S.: On the Einstein Podolsky Rosen Paradox. Physics 1(3), 195–200 (1964)Google Scholar
  17. 17.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  18. 18.
    Fiscaletti, D., Sorli, A.: Nonlocality and the symmetrized quantum potential. Phys. Essays 21(4), 245–251 (2008)Google Scholar
  19. 19.
    Fiscaletti, D., Sorli, A.: Three-dimensional space as a medium of quantum entanglement. Annales UMCS Sectio AAA Physica LXVII, 47–72 (2012)Google Scholar
  20. 20.
    Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27(12), 2885–2892 (1983)CrossRefGoogle Scholar
  21. 21.
    Wootters, W.K.: Time replaced by quantum correlations. Int. J. Theor. Phys. 23(8), 701–711 (1984)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Moreva, E., Brida, G., Gramegna, M., Giovannetti, V., Maccone, L., Genovese, M.: Time from quantum entanglement: an experimental illustration. Phys. Rev. A 89, 052122 (2014)CrossRefGoogle Scholar
  23. 23.
    Gambini, R., Porto, R.A., Pullin, J., Torterolo, S.: Conditional probabilities with Dirac observables and the problem of time in quantum gravity. Phys. Rev. D 79, 041501(R) (2009)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Gambini, R., Pintos, L.P.G., Pullin, J.: An axiomatic formulation of the Montevideo formulation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 42(4), 256–263 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442–456 (1991)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Vedral, V.: Time, (inverse) temperature and cosmological inflation as entanglement (2014). arXiv:1408.6965v1 [quant-ph]
  27. 27.
    Fiscaletti, D., Sorli, A.: Timeless space is a fundamental arena of quantum processes. IUP J. Phys. 3(4), 34–49 (2010)Google Scholar
  28. 28.
    Fiscaletti, D., Sorli, A.S., Klinar, D.: The symmetryzed quantum potential and space as a direct information medium. Annales de la Fondation Louis de Broglie 37, 41–71 (2012)zbMATHGoogle Scholar
  29. 29.
    Fiscaletti, D., Sorli, A.: Non-local quantum geometry and three-dimensional space as a direct information medium. Quantum Matter 3(3), 200–214 (2014)CrossRefGoogle Scholar
  30. 30.
    Hiley, B., Callaghan, R.: The Clifford algebra approach to quantum mechanics B: the Dirac particle and its relation to the Bohm approach (2010). arXiv:1011.4033v1 [math-ph]
  31. 31.
    Chiatti, L.: The transaction as a quantum concept. In: Licata, I. (ed.) Space-time geometry and quantum events, pp. 11–44. Nova Science Publishers, New York (2014). arXiv:1204.6636
  32. 32.
    Licata, I.: Transaction and non-locality in quantum field theory. Eur. Phys. J. Web Conf. 70 (2013). doi: 10.1051/epjconf/20147000039
  33. 33.
    Licata, I., Chiatti, L.: Archaic universe and cosmological model: ’big-bang’ as nucleation by vacuum. Int. J. Theor. Phys. 49(10), 2379–2402 (2010). arXiv:1004.1544
  34. 34.
    Chiatti, L., Licata, I.: Relativity with respect to measurement: collapse and quantum events from Fock to Cramer. Systems 2(4), 576–589 (2014)CrossRefGoogle Scholar
  35. 35.
    Kastner, R.: The new transactional interpretation of quantum theory: the reality of possibility. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  36. 36.
    Kastner, R.E.: On delayed choice and contingent absorber experiments. ISRN Math. Phys. 2012, 9, Article ID 617291 (2012)Google Scholar
  37. 37.
    Galapon, E.A., Delgado, F., Muga, J.G., Egusquiza, I.: Transition from discrete to continuous time-of-arrival distribution for a quantum particle. Phys. Rev. A 72, 042107 (2005)Google Scholar
  38. 38.
    Galapon, E.A.: Theory of quantum arrival and spatial wave function collapse on the appearance of particle. Proc. R. Soc. A 465, 71–86 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Galapon, E.A., Caballar, R.F., Bahague, Jr R.T.: Confined quantum time of arrivals. Phys. Rev. Lett. 93, 180406 (2004)Google Scholar
  40. 40.
    Galapon, E.A.: Theory of quantum first time of arrival via spatial confinement I: confined time of arrival operators for continuous potentials. Int. J. Mod. Phys.A 21(31), 6351–6381 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Einstein, A., Podolski, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)CrossRefzbMATHGoogle Scholar
  42. 42.
    Fiscaletti, D., Sorli, A.: Bijective epistemology and space-time. Found. Sci. 20, 387–398 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Mctaggart, J.: The unreality of time. Mind 17, 456–73 (1908)Google Scholar
  44. 44.
    Markopoulou, F.: Space does not exist, so time can (2009). arXiv:0909.1861
  45. 45.
    Sorli, A., Fiscaletti, D., Klinar, D.: New insights into the special theory of relativity. Phys. Essays 24(2), 313–318 (2011)CrossRefGoogle Scholar
  46. 46.
    Yourgrau, P.: A World Without Time: The Forgotten Legacy of Godel and Einstein. Basic Books, New York (2006)zbMATHGoogle Scholar
  47. 47.
    Barbour, J.: The nature of time (2009). arXiv:0903.3489
  48. 48.
    Tegmark, M.: The mathematical universe (2007). arXiv:0704.0646v2
  49. 49.
    Ellis, G.F.R.: Physics in the real universe: time and spacetime. Gen. Relativ. Gravit. 38(12), 1797–1824 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Aityan, S.K.: The notion of quantum time. Ontology Studies/Cuadernos de Ontología 12, 303–328 (2012)Google Scholar
  51. 51.
    Jannes, G.: Condensed matter lessons about the origin of time. Found. Phys. 45(3), 279–294 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Sakharov, A.D.: Vacuum quantum fluctuations in curved space and the theory of gravitation Doklady Akad. Nauk S.S.S.R. 177(1), 70–71 (1967)Google Scholar
  53. 53.
    Rueda, A., Haisch, B.: Gravity and the quantum vacuum inertia hypothesis. Annalen der Physik 14(8), 479–498 (2005). arXiv:gr-qc/0504061v3.
  54. 54.
    Puthoff, H.E.: Polarizable-vacuum (PV) approach to general relativity. Found. Phys. 32(6), 927–943 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Consoli, M.: Do potentials require massless particles? Phys. Rev. Lett. B 672(3), 270–274 (2009)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Consoli, M.: On the low-energy spectrum of spontaneously broken phi4 theories. Mod. Phys. Lett. A 26, 531–542 (2011)CrossRefzbMATHGoogle Scholar
  57. 57.
    Consoli, M.: The vacuum condensates: a bridge between particle physics to gravity? In: Licata, I., Sakaji, A. (eds.) Vision of oneness. Aracne Editrice, Roma (2011)Google Scholar
  58. 58.
    Santos, E.: Quantum vacuum fluctuations and dark energy (2009). arXiv:0812.4121v2 [gr-qc]
  59. 59.
    Santos, E.: Space-time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Fiscaletti, D., Sorli, A.: Space-time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Annales UMCS Sectio AAA Physica LXIX, 55–81 (2014)Google Scholar
  61. 61.
    Ghao, S.: Why gravity is fundamental (2010). arXiv:1001.3029v3
  62. 62.
    Ng, Y.J.: Holographic foam, dark energy and infinite statistics. Phys. Lett. B 657(1), 10–14 (2007)Google Scholar
  63. 63.
    Ng, Y.J.: Spacetime foam: from entropy and holography to infinite statistics and non-locality. Entropy 10, 441–461 (2008)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Ng, Y.J.: Holographic quantum foam (2010). arXiv:1001.0411v1 [gr-qc]
  65. 65.
    Ng, Y.J.: Various facets of spacetime foam (2011). arXiv:1102.4109v1 [gr-qc]

Copyright information

© Chapman University 2017

Authors and Affiliations

  1. 1.SpaceLife InstituteSan Lorenzo in Campo (PU)Italy
  2. 2.Foundations of Physics InstituteIdrijaSlovenia

Personalised recommendations