Advertisement

Quantum Studies: Mathematics and Foundations

, Volume 3, Issue 4, pp 279–292 | Cite as

A conjecture concerning determinism, reduction, and measurement in quantum mechanics

  • Arthur JabsEmail author
Regular Paper

Abstract

It is shown that it is possible to introduce determinism into quantum mechanics by tracing the probabilities in the Born rules back to pseudorandomness in the absolute phase constants of the wave functions. Each wave function is conceived to contain an individual phase factor \(\exp (\mathrm {i}\alpha )\). In an ensemble of systems, the phase constants \(\alpha \) are taken to be pseudorandom numbers. A reduction process (collapse), independent of any measurement, is conceived to be a spatial contraction of two wavepackets when they meet and satisfy a certain criterion. The criterion depends on the phase constants of both wavepackets. The measurement apparatus fans out the incoming wavepacket into spatially separated eigenpackets of the observable and a reduction associates the point of contraction with an eigenvalue of the observable. The theory is nonlocal and contextual.

Keywords

Determinism Overall phases Hidden variables Reduction Collapse Localization Quantum measurement Born rule 

References

  1. 1.
    Smoluchowski, M.v.: Über den Begriff des Zufalls und den Ursprung der Wahrscheinlichkeitsgesetze in der Physik. Die Naturwissenschaften 6 (17), 253–263 (1918)Google Scholar
  2. 2.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
  3. 3.
    Dirac, P.A.M.: Development of the Physicist’s Conception of Nature. In: Mehra, J. (ed.): The Physicist’s Conception of Nature, pp. 1–14. Reidel Publishing Company, Dordrecht (1973) (the quotation is from p. 7)Google Scholar
  4. 4.
    Neumann, J.v.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton NJ, 1955)Google Scholar
  5. 5.
    Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  6. 6.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Conway, J., Kochen, S.: The free will theorem. Found. Phys. 36, 1441–1473 (2006). (Slightly updated version) arXiv:quant-ph/0604079
  8. 8.
    Ax, J., Kochen, S.: Extension of quantum mechanics to individual systems. arXiv:quant-ph/9905077
  9. 9.
    Einstein, A.: On the method of theoretical physics. Philos. Sci. 1, 163–169 (1934) (the quotation is from p. 169)Google Scholar
  10. 10.
    Jabs, A.: An interpretation of the formalism of quantum mechanics in terms of epistemological realism. Brit. J. Philos. Sci. 43, 405–421 (1992). arXiv:1212.4687 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jabs, A.: Quantum mechanics in terms of realism. (2016). arXiv:quant-ph/9606017
  12. 12.
    Jabs, A.: A realist view on the treatment of identical particles. (2015). arXiv:quant-ph/0605136
  13. 13.
    Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803–827 (1926)CrossRefzbMATHGoogle Scholar
  14. 14.
    Born, M.: Zur Quantenmechanik der Stoßvorgänge, Z. Phys. 37, 863–867 (1926). (English translation in [38, p. 52-55])Google Scholar
  15. 15.
    Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)zbMATHGoogle Scholar
  16. 16.
    Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. I, 3rd. edn., Vol. II, 2nd. edn. Wiley, New York (1970 and 1971)Google Scholar
  17. 17.
    Paul, H.: Introduction to Quantum Optics. Cambridge University Press, Cambridge (2004) (Sec. 7.4)Google Scholar
  18. 18.
    Kaltenbaek, R., Blauensteiner, B., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental interference of independent photons. Phys. Rev. Lett. 96, 240502 (2006). arXiv:quant-ph/0603048
  19. 19.
    Laloë, F.: The hidden phase of Fock states; quantum non-local effects. Eur. Phys. J. D33 (1), 87–97 (2005). arXiv:quant-ph/0409097
  20. 20.
    Klaers, J., Schmitt, J., Vewinger, F., Weitz, M.: Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010). arXiv:1007.4088 CrossRefGoogle Scholar
  21. 21.
    Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I, II. Wiley, New York (1977)Google Scholar
  22. 22.
    Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59(1), 1–46 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Messiah, A.: Quantum Mechanics, vol. I, II. North-Holland Publishing Company, Amsterdam (1961)Google Scholar
  24. 24.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. III, pp. 6-5–6-6. Addison-Wesley, Reading (1965)Google Scholar
  25. 25.
    Lévy-Leblond, J.-M.: Quantum fact and classical fiction: clarifying Landé’s pseudo-paradox. Am. J. Phys. 44(11), 1130–1132 (1976)CrossRefGoogle Scholar
  26. 26.
    Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., Arndt, M.: Colloquium: quantum interference of clusters and molecules. Rev. Mod. Phys. 84(1), 157–173 (2012). arXiv:1109.5937 CrossRefGoogle Scholar
  27. 27.
    Arndt, M., Hornberger, K.: Quantum interferometry with complex molecules. In: Deveaud-Pledran, B., Quattropani, A., Schwendimann, P. (eds.) Quantum Coherence in Solid State Systems, International School of Physics ‘Enrico Fermi’, Course CLXXI, vol. 171. IOS Press, Amsterdam (2009). arXiv:0903.1614
  28. 28.
    Arndt, M., Gerlich, S., Hornberger, K., Mayor, M.: Interferometrie mit komplexen Molekülen. Phys. J. 9(10), 37–43 (2010)Google Scholar
  29. 29.
    Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms, p. 83. Plenum, New York (1977)CrossRefGoogle Scholar
  30. 30.
    Jauch, J.M., Rohrlich, F.: The Theory of Photons and Electrons, p. 410. Springer, New York (1976)CrossRefGoogle Scholar
  31. 31.
    Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003). arXiv:quant-ph/0112095
  32. 32.
    Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–774 (2003). arXiv:quant-ph/0105127
  33. 33.
    Joos, E.: Decoherence: an introduction. In: Physics and philosophy (2007—ID: 010), pp. 1–26Google Scholar
  34. 34.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470–491 (1986) ([5, p. 201–212])Google Scholar
  35. 35.
    Bassi, A.: Dynamical reduction models: present status and future developments. J. Phys. Conf. Ser. 67 012013 (2007). (and literature cited therein) arXiv:quant-ph/0701014
  36. 36.
    Pearle, P.: Collapse models. In: Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 195–234. Springer, Berlin (1999). arXiv:quant-ph/9901077
  37. 37.
    Brusheim-Johansson, H., Hansson, J.: A chaotic dynamical reduction model for the quantum mechanical state vector. arXiv:quant-ph/0611003
  38. 38.
    Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)Google Scholar
  39. 39.
    Einstein, A.: Relativity, The Special and the General Theory (Methuen, London, 1970) Appendix V, the quotation is from, pp. 141, 142 (1970)Google Scholar
  40. 40.
    Holland, P.R.: The Quantum Theory of Motion, pp. 350, 404. Cambridge University Press, Cambridge (1993)Google Scholar
  41. 41.
    Süßmann, G.: Einführung in die Quantenmechanik, pp. 27, 75. Bibliographisches Institut, Mannheim (1963)Google Scholar
  42. 42.
    Wigner, E.P.: Interpretation of Quantum Mechanics. 38, pp. 260–314 (especially p. 291)Google Scholar
  43. 43.
    Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.): Albert Einstein: Philosopher-Scientist, pp. 199–241. Cambridge University Press, London (1949) (the quotation is from p. 210 (Reprinted in [38, p. 9–49])Google Scholar
  44. 44.
    Bunge, M.: Quantum Mechanics and Measurement. Int. J. Quant. Chem. 12(Suppl. 1), 1–13 (1977)Google Scholar
  45. 45.
    Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys. 35(2), 197–213 (2005). (This paper comments on various attempts to derive the Born rules) arXiv:quant-ph/0312058
  46. 46.
    Heitler, W.: The Quantum Theory of Radiation, 3rd edn, p. 65. Oxford University Press, Oxford (1954)zbMATHGoogle Scholar
  47. 47.
    Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics, p. 178. Interscience Publishers, New York (1965)Google Scholar
  48. 48.
    Davydov, A.S.: Quantum Mechanics, 2nd edn, p. 130. Pergamon Press, Oxford (1976)Google Scholar
  49. 49.
    Dirac, P.A.M.: The quantum theory of emission and absorption of radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927)CrossRefzbMATHGoogle Scholar
  50. 50.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995) (Sec. 10.7)Google Scholar
  51. 51.
    Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, Vol. V, Part 1. Springer, Berlin (1958) pp. 60 footnote 1. English translation of a 1958 reprint by Achuthan, P., Venkatesan, K.: General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980) p. 63, footnote 2Google Scholar
  52. 52.
    Schrödinger, E.: Spezielle Relativitätstheorie und Quantenmechanik (Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1931)) pp. 238–247 (especially p. 242)Google Scholar
  53. 53.
    Becker, R.: Electromagnetic Fields and Interactions, vol. II, Quantum Theory of Atoms and Radiation, pp. 125. Dover Publications, New York (1982)Google Scholar

Copyright information

© Chapman University 2016

Authors and Affiliations

  1. 1.Alumnus, Technical University BerlinBerlinGermany

Personalised recommendations