# A conjecture concerning determinism, reduction, and measurement in quantum mechanics

## Abstract

It is shown that it is possible to introduce determinism into quantum mechanics by tracing the probabilities in the Born rules back to pseudorandomness in the absolute phase constants of the wave functions. Each wave function is conceived to contain an individual phase factor \(\exp (\mathrm {i}\alpha )\). In an ensemble of systems, the phase constants \(\alpha \) are taken to be pseudorandom numbers. A reduction process (collapse), independent of any measurement, is conceived to be a spatial contraction of two wavepackets when they meet and satisfy a certain criterion. The criterion depends on the phase constants of both wavepackets. The measurement apparatus fans out the incoming wavepacket into spatially separated eigenpackets of the observable and a reduction associates the point of contraction with an eigenvalue of the observable. The theory is nonlocal and contextual.

## Keywords

Determinism Overall phases Hidden variables Reduction Collapse Localization Quantum measurement Born rule## References

- 1.Smoluchowski, M.v.: Über den Begriff des Zufalls und den Ursprung der Wahrscheinlichkeitsgesetze in der Physik. Die Naturwissenschaften
**6**(17), 253–263 (1918)Google Scholar - 2.Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)zbMATHGoogle Scholar
- 3.Dirac, P.A.M.: Development of the Physicist’s Conception of Nature. In: Mehra, J. (ed.): The Physicist’s Conception of Nature, pp. 1–14. Reidel Publishing Company, Dordrecht (1973) (the quotation is from p. 7)Google Scholar
- 4.Neumann, J.v.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). English translation: Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton NJ, 1955)Google Scholar
- 5.Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
- 6.Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech.
**17**(1), 59–87 (1967)MathSciNetzbMATHGoogle Scholar - 7.Conway, J., Kochen, S.: The free will theorem. Found. Phys.
**36**, 1441–1473 (2006). (Slightly updated version) arXiv:quant-ph/0604079 - 8.Ax, J., Kochen, S.: Extension of quantum mechanics to individual systems. arXiv:quant-ph/9905077
- 9.Einstein, A.: On the method of theoretical physics. Philos. Sci.
**1**, 163–169 (1934) (the quotation is from p. 169)Google Scholar - 10.Jabs, A.: An interpretation of the formalism of quantum mechanics in terms of epistemological realism. Brit. J. Philos. Sci.
**43**, 405–421 (1992). arXiv:1212.4687 MathSciNetCrossRefGoogle Scholar - 11.Jabs, A.: Quantum mechanics in terms of realism. (2016). arXiv:quant-ph/9606017
- 12.Jabs, A.: A realist view on the treatment of identical particles. (2015). arXiv:quant-ph/0605136
- 13.Born, M.: Quantenmechanik der Stoßvorgänge. Z. Phys.
**38**, 803–827 (1926)CrossRefzbMATHGoogle Scholar - 14.Born, M.: Zur Quantenmechanik der Stoßvorgänge, Z. Phys.
**37**, 863–867 (1926). (English translation in [38, p. 52-55])Google Scholar - 15.Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)zbMATHGoogle Scholar
- 16.Feller, W.: An Introduction to Probability Theory and Its Applications, Vol. I, 3rd. edn., Vol. II, 2nd. edn. Wiley, New York (1970 and 1971)Google Scholar
- 17.Paul, H.: Introduction to Quantum Optics. Cambridge University Press, Cambridge (2004) (Sec. 7.4)Google Scholar
- 18.Kaltenbaek, R., Blauensteiner, B., Zukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental interference of independent photons. Phys. Rev. Lett.
**96**, 240502 (2006). arXiv:quant-ph/0603048 - 19.Laloë, F.: The hidden phase of Fock states; quantum non-local effects. Eur. Phys. J.
**D33**(1), 87–97 (2005). arXiv:quant-ph/0409097 - 20.Klaers, J., Schmitt, J., Vewinger, F., Weitz, M.: Bose–Einstein condensation of photons in an optical microcavity. Nature
**468**, 545–548 (2010). arXiv:1007.4088 CrossRefGoogle Scholar - 21.Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I, II. Wiley, New York (1977)Google Scholar
- 22.Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math.
**59**(1), 1–46 (1954)MathSciNetCrossRefzbMATHGoogle Scholar - 23.Messiah, A.: Quantum Mechanics, vol. I, II. North-Holland Publishing Company, Amsterdam (1961)Google Scholar
- 24.Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. III, pp. 6-5–6-6. Addison-Wesley, Reading (1965)Google Scholar
- 25.Lévy-Leblond, J.-M.: Quantum fact and classical fiction: clarifying Landé’s pseudo-paradox. Am. J. Phys.
**44**(11), 1130–1132 (1976)CrossRefGoogle Scholar - 26.Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., Arndt, M.: Colloquium: quantum interference of clusters and molecules. Rev. Mod. Phys.
**84**(1), 157–173 (2012). arXiv:1109.5937 CrossRefGoogle Scholar - 27.Arndt, M., Hornberger, K.: Quantum interferometry with complex molecules. In: Deveaud-Pledran, B., Quattropani, A., Schwendimann, P. (eds.) Quantum Coherence in Solid State Systems, International School of Physics ‘Enrico Fermi’, Course CLXXI, vol. 171. IOS Press, Amsterdam (2009). arXiv:0903.1614
- 28.Arndt, M., Gerlich, S., Hornberger, K., Mayor, M.: Interferometrie mit komplexen Molekülen. Phys. J.
**9**(10), 37–43 (2010)Google Scholar - 29.Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms, p. 83. Plenum, New York (1977)CrossRefGoogle Scholar
- 30.Jauch, J.M., Rohrlich, F.: The Theory of Photons and Electrons, p. 410. Springer, New York (1976)CrossRefGoogle Scholar
- 31.Adler, S.L.: Why decoherence has not solved the measurement problem: a response to P.W. Anderson. Stud. Hist. Philos. Mod. Phys.
**34**, 135–142 (2003). arXiv:quant-ph/0112095 - 32.Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**75**, 715–774 (2003). arXiv:quant-ph/0105127 - 33.Joos, E.: Decoherence: an introduction. In: Physics and philosophy (2007—ID: 010), pp. 1–26Google Scholar
- 34.Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**34**(2), 470–491 (1986) ([5, p. 201–212])Google Scholar - 35.Bassi, A.: Dynamical reduction models: present status and future developments. J. Phys. Conf. Ser.
**67**012013 (2007). (and literature cited therein) arXiv:quant-ph/0701014 - 36.Pearle, P.: Collapse models. In: Breuer, H.-P., Petruccione, F. (eds.) Open Systems and Measurement in Relativistic Quantum Theory, pp. 195–234. Springer, Berlin (1999). arXiv:quant-ph/9901077
- 37.Brusheim-Johansson, H., Hansson, J.: A chaotic dynamical reduction model for the quantum mechanical state vector. arXiv:quant-ph/0611003
- 38.Wheeler, J.A., Zurek, W.H. (eds.): Quantum Theory and Measurement. Princeton University Press, Princeton (1983)Google Scholar
- 39.Einstein, A.: Relativity, The Special and the General Theory (Methuen, London, 1970) Appendix V, the quotation is from, pp. 141, 142 (1970)Google Scholar
- 40.Holland, P.R.: The Quantum Theory of Motion, pp. 350, 404. Cambridge University Press, Cambridge (1993)Google Scholar
- 41.Süßmann, G.: Einführung in die Quantenmechanik, pp. 27, 75. Bibliographisches Institut, Mannheim (1963)Google Scholar
- 42.Wigner, E.P.: Interpretation of Quantum Mechanics. 38, pp. 260–314 (especially p. 291)Google Scholar
- 43.Bohr, N.: Discussion with Einstein on epistemological problems in atomic physics. In: Schilpp, P.A. (ed.): Albert Einstein: Philosopher-Scientist, pp. 199–241. Cambridge University Press, London (1949) (the quotation is from p. 210 (Reprinted in [38, p. 9–49])Google Scholar
- 44.Bunge, M.: Quantum Mechanics and Measurement. Int. J. Quant. Chem.
**12**(Suppl. 1), 1–13 (1977)Google Scholar - 45.Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys.
**35**(2), 197–213 (2005). (This paper comments on various attempts to derive the Born rules) arXiv:quant-ph/0312058 - 46.Heitler, W.: The Quantum Theory of Radiation, 3rd edn, p. 65. Oxford University Press, Oxford (1954)zbMATHGoogle Scholar
- 47.Akhiezer, A.I., Berestetskii, V.B.: Quantum Electrodynamics, p. 178. Interscience Publishers, New York (1965)Google Scholar
- 48.Davydov, A.S.: Quantum Mechanics, 2nd edn, p. 130. Pergamon Press, Oxford (1976)Google Scholar
- 49.Dirac, P.A.M.: The quantum theory of emission and absorption of radiation. Proc. R. Soc. Lond. A
**114**, 243–265 (1927)CrossRefzbMATHGoogle Scholar - 50.Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995) (Sec. 10.7)Google Scholar
- 51.Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, Vol. V, Part 1. Springer, Berlin (1958) pp. 60 footnote 1. English translation of a 1958 reprint by Achuthan, P., Venkatesan, K.: General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980) p. 63, footnote 2Google Scholar
- 52.Schrödinger, E.: Spezielle Relativitätstheorie und Quantenmechanik (Sitzungsberichte der Preußischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (1931)) pp. 238–247 (especially p. 242)Google Scholar
- 53.Becker, R.: Electromagnetic Fields and Interactions, vol. II, Quantum Theory of Atoms and Radiation, pp. 125. Dover Publications, New York (1982)Google Scholar