# Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission

- 433 Downloads
- 8 Citations

## Abstract

We investigate the continuous quantum measurement of a superconducting qubit undergoing fluorescence. The fluorescence of the qubit is detected via a phase preserving heterodyne measurement, giving the fluorescence quadrature signals as two continuous qubit readout results. Using the stochastic path integral approach to the measurement physics, we derive most likely paths between boundary conditions on the state, and compute approximate time correlation functions between all stochastic variables via diagrammatic perturbation theory. We focus on paths that increase in energy during the continuous measurement. Our results are compared to Monte Carlo numerical simulation of the trajectories, and we find close agreement between direct simulation and theory. We generalize this analysis to arbitrary diffusive quantum systems that are continuously monitored.

## Keywords

Quantum trajectories Quantum measurement Spontaneous emission Heterodyne measurement Stochastic path integral## Notes

### Acknowledgments

This work was supported by US Army Research Office Grants No. W911NF-09-0-01417 and No. W911NF-15-1-0496, by National Science Foundation grant DMR-1506081, by John Templeton Foundation grant ID 58558, and by Development and Promotion of Science and Technology Talents Project Thailand. This work was partly supported by the EMERGENCES grant QUMOTEL of Ville de Paris. Thanks in particular to the COST Action MP1209 for supporting the Third Conference on Quantum Thermodynamics, in Porquerolles, France, where this work was begun. We thank Mark Dykman, Alexander Korotkov, Kater Murch, and Alain Sarlette for discussions and helpful comments on the work.

## References

- 1.Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.
**60**, 1351 (1988)CrossRefGoogle Scholar - 2.Alonso, J.J., Lutz, E., Romito, A.: Thermodynamics of weakly measured quantum systems. Phys. Rev. Lett.
**116**, 080403 (2015)CrossRefGoogle Scholar - 3.Barchielli, A., Gregoratti, M.: Quantum trajectories and measurements in continuous time. Springer-Verlag, Berlin Heidelberg (2009). doi: 10.1007/978-3-642-01298-3
- 4.Bolund, A., Mølmer, K.: Stochastic excitation during the decay of a two-level emitter subject to homodyne and heterodyne detection. Phys. Rev. A
**89**, 023827 (2014)CrossRefGoogle Scholar - 5.Campagne-Ibarcq, P., Six, P., Bretheau, L., Sarlette, A., Mirrahimi, M., Rouchon, P., Huard, B.: Observing quantum state diffusion by heterodyne detection of fluorescence. Phys. Rev. X
**6**, 011002 (2016)Google Scholar - 6.Carmichael, H.: An open systems approach to quantum optics: lectures presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Springer Science and Business Media (2009)Google Scholar
- 7.Carmichael, H.J., Singh, S., Vyas, R., Rice, P.R.: Photoelectron waiting times and atomic state reduction in resonance fluorescence. Phys. Rev. A
**39**, 1200 (1989)CrossRefGoogle Scholar - 8.Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D
**26**, 1817 (1982)CrossRefGoogle Scholar - 9.Caves, C.M., Combes, J., Jiang, Z., Pandey, S.: Quantum limits on phase-preserving linear amplifiers. Phys. Rev. A
**86**, 063802 (2012)CrossRefGoogle Scholar - 10.Chantasri, A., Dressel, J., Jordan, A.N.: Action principle for continuous quantum measurement. Phys. Rev. A
**88**, 042110 (2013)CrossRefGoogle Scholar - 11.Chantasri, A., Jordan, A.N.: Stochastic path-integral formalism for continuous quantum measurement. Phys. Rev. A
**92**, 032125 (2015)MathSciNetCrossRefGoogle Scholar - 12.Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett.
**68**, 580 (1992)CrossRefGoogle Scholar - 13.Davies, E.B.: Quantum theory of open systems. IMA (1976)Google Scholar
- 14.Dressel, J., Agarwal, S., Jordan, A.N.: Contextual values of observables in quantum measurements. Phys. Rev. Lett.
**104**, 240401 (2010)CrossRefGoogle Scholar - 15.Dressel, J., Jordan, A.N.: Contextual-value approach to the generalized measurement of observables. Phys. Rev. A
**85**, 022123 (2012)CrossRefGoogle Scholar - 16.Dum, R., Zoller, P., Ritsch, H.: Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A
**45**, 4879 (1992)CrossRefGoogle Scholar - 17.Elouard, C., Auffeves, A., Clusel, M.: Stochastic thermodynamics in the quantum regime. arXiv preprint arXiv:1507.00312 (2015)
- 18.Gardiner, C.W.: Handbook of stochastic methods. Springer, Berlin (1985)Google Scholar
- 19.Hatridge, M., Shankar, S., Mirrahimi, M., Schackert, F., Geerlings, K., Brecht, T., Sliwa, K., Abdo, B., Frunzio, L., Girvin, S.M., et al.: Quantum back-action of an individual variable-strength measurement. Science
**339**, 178–181 (2013)MathSciNetCrossRefGoogle Scholar - 20.Holevo, A.S.: Statistical structure of quantum theory. Springer Science & Business Media (2001)Google Scholar
- 21.Jordan, A.N., Büttiker, M.: Continuous quantum measurement with independent detector cross correlations. Phys. Rev. Lett.
**95**, 220401 (2005)CrossRefGoogle Scholar - 22.Jordan, A.N., Korotkov, A.N.: Qubit feedback and control with kicked quantum nondemolition measurements: a quantum bayesian analysis. Phys. Rev. B
**74**, 085307 (2006)CrossRefGoogle Scholar - 23.Katz, N., Ansmann, M., Bialczak, R.C., Lucero, E., McDermott, R., Neeley, M., Steffen, M., Weig, E.M., Cleland, A.N., Martinis, J.M., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science
**312**, 1498–1500 (2006)MathSciNetCrossRefGoogle Scholar - 24.Katz, N., Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A., Martinis, J.M., et al.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett.
**101**, 200401 (2008)CrossRefGoogle Scholar - 25.Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B
**60**, 5737 (1999)CrossRefGoogle Scholar - 26.Korotkov, A.N.: Selective quantum evolution of a qubit state due to continuous measurement. Phys. Rev. B
**63**, 115403 (2001)CrossRefGoogle Scholar - 27.Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett.
**97**, 166805 (2006)CrossRefGoogle Scholar - 28.Kraus, K., Böhm, A., Dollard, J.D., Wootters, W.: States, effects, and operations fundamental notions of quantum theory. Springer, Berlin Heidelberg (1983)CrossRefGoogle Scholar
- 29.Murch, K.W., Weber, S.J., Macklin, C., Siddiqi, I.: Observing single quantum trajectories of a superconducting quantum bit. Nature
**502**, 211–214 (2013)CrossRefGoogle Scholar - 30.Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)Google Scholar
- 31.Rouchon, P.: Models and feedback stabilization of open quantum systems. arXiv preprint arXiv:1407.7810 (2014)
- 32.Rouchon, P., Ralph, J.F.: Efficient quantum filtering for quantum feedback control. Phys. Rev. A
**91**, 012118 (2015)MathSciNetCrossRefGoogle Scholar - 33.Six, P., Campagne-Ibarcq, P., Bretheau, L., Huard, B., Rouchon, P.: Parameter estimation from measurements along quantum trajectories. arXiv preprint arXiv:1503.06149 (2015)
- 34.Weber, S.J., Chantasri, A., Dressel, J., Jordan, A.N., Murch, K.W., Siddiqi, I.: Mapping the optimal route between two quantum states. Nature
**511**, 570–573 (2014)CrossRefGoogle Scholar - 35.Wiseman, H.M., Milburn, G.J.: Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. Phys. Rev. A
**47**, 1652 (1993)CrossRefGoogle Scholar - 36.Wiseman, H.M., Milburn, G.J.: Quantum measurement and control. Cambridge University Press (2009)Google Scholar
- 37.Wong, E., Zakai, M.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci.
**3**, 213–229 (1965)MathSciNetCrossRefMATHGoogle Scholar - 38.Xu, Q., Greplova, E., Julsgaard, B., Mølmer, K.: Correlation functions and conditioned quantum dynamics in photodetection theory. Physica Scripta
**90**, 128004 (2015)CrossRefGoogle Scholar