Finite linear spaces, plane geometries, Hilbert spaces and finite phase space

  • M. RevzenEmail author
  • A. Mann
Regular Paper


Finite plane geometry is associated with finite dimensional Hilbert space. The association allows mapping of q-number Hilbert space observables to the c-number formalism of quantum mechanics in phase space. The mapped entities reflect geometrically based line–point interrelation. Particularly simple formulas are involved when use is made of mutually unbiased bases representations for the Hilbert space entries. The geometry specifies a point–line interrelation. Thus underpinning d-dimensional Hilbert space operators (resp. states) with geometrical points leads to operators termed “line operators” underpinned by the geometrical lines. These “line operators”, \(\hat{L}_j;\) (j designates the line) form a complete orthogonal basis for Hilbert space operators. The representation of Hilbert space operators in terms of these operators form the phase space representation of the d-dimensional Hilbert space. Examples for the use of the “line operators” in mapping (finite dimensional) Hilbert space operators onto finite dimensional phase space functions are considered. These include finite dimensional Wigner function and Radon transform and a geometrical interpretation for the involvement of parity in the mappings of Hilbert space onto phase space. Two d-dimensional particles product states are underpinned with geometrical points. The states, \(|L_j\rangle \) underpinned with the corresponding geometrical lines are maximally entangled states (MES). These “line states” provide a complete \(d^2\) dimensional orthogonal MES basis for for the two d-dimensional particles. The complete \(d^2\) dimensional MES i.e. the “line states” are shown to provide a transparent geometrical interpretation to the so-called Mean King Problem and its variant. The “line operators” (resp. “line states”) are studied in detail. The paper aims at self sufficiency and to this end all relevant notions are explained herewith.


Finite geometry Mutual unbiased bases Collective coordinates 


  1. 1.
    Wigner, E.P.: On the quantum corrections for thermodyanamic equilibrium. Phys. Rev. 40, 749 (1932)CrossRefzbMATHGoogle Scholar
  2. 2.
    Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover publication IncGoogle Scholar
  3. 3.
    Cohen, L.: Generalized phase space distribution functions. J. Math. Phys. 7, 781 (1966)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc. 45, 99 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Groenewold, H.: On the principles of elementary quantum mechanics. Physica (Amsterdam) 12, 405 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Schroeck, F.E.: Quantum Mechanics in Phase Space. Kluwer, Boston (1996)Google Scholar
  7. 7.
    Zachos, C.K., Fairlie, D.B., Curtright, T.M. (eds.): Quantum Mechanics in Phase Space. World Scientific, New Jersey (2005)zbMATHGoogle Scholar
  8. 8.
    Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Perelomov, A.: Generalized Coherent States. Springer, Berlin (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Klauder, J.R., Skagerstam, B.-S. (eds.) Coherent States. World Scientific Publishing Co., Singapore (1985)Google Scholar
  11. 11.
    Schleich, W.: Quantum Optics in Phase Space. Wiley, New-York (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Klauder, J.R., Sudarshan, E.C.G.: Fundamental Quantum Optics. In: Benjamin, W.A. (ed.) New-York (2006) (Reprinted by Dover, Mineola)Google Scholar
  13. 13.
    Leonhardt, U.: Measuring the Quantum State of Light. Cambridge U Press, Cambridge (1997)zbMATHGoogle Scholar
  14. 14.
    Ellinas, D., Bracken, A.J.: Phase-space-region operators and Wigner function: geometric construction and tomography. Phys. Rev. A. 78, 052106 (2008)CrossRefGoogle Scholar
  15. 15.
    Wootters, W.K.: A Wigner function formulation of finite-state quantum mechanics. Ann. Phys. (N.Y.) 176, 1 (1987)Google Scholar
  16. 16.
    Vourdas, A.: Phase space methods for finite quantum systems. Rep. Math. Phys. 40, 367 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Vourdas, A.: Quantum systems with finite Hilobert Space. Rep. Prog. Phys. 67, 267 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wootters, W.K., Fields, B.D.: Fields, optimal state determination by mutual unbiased bases. Ann. Phys. (N.Y.) 191, 363 (1989)Google Scholar
  19. 19.
    Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 560 (1960)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Klimov, A.B., Sanchez-Soto, L.L., de Guise, H.: Multicomplementary operators via finite Fourier transform. J. Phys. A Math. Gen. 38, 2747 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased base. J. Quant. Inf. 8, 535 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Revzen, M.: Maximally entangled states via mutually unbiased collective bases. Phys. Rev. A 81, 012113 (2010)CrossRefGoogle Scholar
  24. 24.
    Combescure, M.: The maximally unbiased bases revisited. (2006). arXiv:quant-ph/0605090
  25. 25.
    Bengtsson, I.: MUBs, polytops and finite geometries. AIP Conf. Proc. 750, 63–69 (2005). arXiv:quant-ph/0406174
  26. 26.
    Planat, M., Rosu, H.C.: Mutually unbiased phase states, phase uncertainty and Gauss Sums. Euro. Phys. J. 36, 133 (2005)Google Scholar
  27. 27.
    Planat, M., Rosu, H.C., Perrine, S.: A survey of finite algebraic geometrical structures underlying mutually unbiased quantum measurements. Found. Phys. 36, 1662 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wootters, W.K.: Quantum measurements and finite geometry. Found. Phys. 36, 112 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bennett, M.K.: Affine and Projective Geometry. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ivanovic, I.D.: Geometrical description of quantal state determination. J. Phys. A 14, 3241 (1981)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Bar-On, T.: Discrete Wigner function by symmetric informationally complete positive operator valued measure. J. Math. Phys. 50, 072106 (2009)Google Scholar
  33. 33.
    Bar-On, T.: From continuous Wigner function to discrete Wigner function. Eur. Phys. L 88, 10002 (2009)Google Scholar
  34. 34.
    Revzen, M.: Geometrical underpinning of finite dimensional Hilbert space. (2011). arXiv:1111.6446v4 [quant-ph]
  35. 35.
    Mello, P.A., Revzen, M.: Wigner Function and successive measurements of position and momentum. Phys. Rev. A 89, 012106 (2014)CrossRefGoogle Scholar
  36. 36.
    Khanna, F.C., Mello, P.A., Revzen, M.: Classical and quantum state reconstruction. Eur. J. Phys. 33, 921 (2012)CrossRefzbMATHGoogle Scholar
  37. 37.
    Mann, A., Mello, P.A., Revzen, M.: Wigner transform for continuous and discrete finite dimensional Hilbert spaces. unpublishedGoogle Scholar
  38. 38.
    Batten, L.M., Beutelspracher, A.: The Theory of Finite Linear Spaces. Cambridge University Press, Cambridge (1993)Google Scholar
  39. 39.
    Revzen, M.: Radon transform in finite Hilbert space. EPL 98, 1001 (2012)CrossRefGoogle Scholar
  40. 40.
    Saniga, M., Planat, M., Rosu, H.: Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclassic Opt. 6, L19 (2004)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Loustau, J., Dillon, M.: Linear Geometry with Computer Graphics. Macel Dekker Inc, New York (1993)zbMATHGoogle Scholar
  42. 42.
    Schroeder, M.R.: Number Theory in Science and Communication. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  43. 43.
    Klimov, A.B., Munos, C., Romero, J.L.: Geometrical approach to discrete Wigner function. J. Phys. A 39, 14471 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Kalev, A., Revzen, M., Khanna, F.C.: Partially unbiased entangled bases. Phys. Rev. A 80, 022112 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Englert, B.-G., Aharonov, Y.: The mean king problem: prime degrees of freedom. Phys. Lett. A. 284, 1 (2001)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Schwinger, J.: Quantum Mechanics: Symbolism of Atomic Measurements. In: Englert, B.-G. (ed.). Springer, New York, p. 78 (2001)Google Scholar
  47. 47.
    Grossman, A.: Parity operator in quantization of delta function. Math. Phys. 48, 191 (1976)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Royer, A.: Wigner function as expectation value of a parity operator. Phys. Rev. A 15, 449 (1977)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Royer, A.: Wigner function in Louiville space: a canonical formalism. Phys. Rev. A 43, 44 (1991)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Royer, A.: Galilian Space–Time symmetries in Liouville space and Wigner Weyl representation. Phys. Rev. A 45, 793 (1992)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Bishop, R.F., Vourdas, A.: Displaced and squeezed parity operator: its role in classical mappings and quantum theories. Phys. Rev. A 50, 4488 (1994)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Klimov, A.B., Romero, J.L., Bjork, G., Sanchez-Soto, L.L.: Geometrical approach to mutually unbiased bases. J. Phys. A Math. Theor. Phys. 40, 3987 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Klimov, A.B., Romero, J.L., Bjork, G., Sanchez-Soto, L.L.: Discrete phase space structure of n-Qubits mutually unbiased bases. J. Phys. A Ann. Phys. (NY) 324, 53 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Revzen, M.: Universal maximally entangled states. Quant. Stud. Math. Found. 2, 77 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Reimpell, M., Werner, R.: Meaner king uses biased bases. Phys. Rev. A. 75, 062334 (2007)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Mermin, N.D.: Limits to quantum mechanics as a source of magic tricks: retrodiction and Bell-Kochen-Specker theorem. Phys. Rev. Lett. 74, 831 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Kalev, A., Mann, A., Revzen, M.: Quantum mechanical retrodiction through an extended Mean King Problem. Eur. Phys. Lett. 104, 50008 (2013)CrossRefGoogle Scholar
  58. 58.
    Vaidman, L., Aharonov, Y., Albert, D.: How to ascertain the values of sigma \(x, \sigma y\), and \(\sigma z\) of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385 (1987)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Durt, T.: A new solution for the Mean King’s Problem. Int. J. Mod. Phys. B. 20, 1742 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Aravind, P.K.: Solution to the King’s Problem in prime power dimensions. Naturforsch 58a, 85 (2003)Google Scholar
  61. 61.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge U. Press, Cambridge (2000)zbMATHGoogle Scholar
  62. 62.
    Revzen, M.: Maximal entanglement collective coordinates and tracking the King. J. Phys. A Math. Theor. 46, 075303 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Chapman University 2016

Authors and Affiliations

  1. 1.Department of PhysicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations