A nonlocal wave–particle duality

Regular Paper

Abstract

We propose and analyse a modified ghost-interference experiment, and show that revealing the particle nature of a particle passing through a double-slit hides the wave nature of a spatially separated particle which it is entangled with. We derive a nonlocal duality relation, \({\mathcal D}_1^2 + {\mathcal V}_2^2 \le 1\), which connects the path distinguishability of one particle to the interference visibility of the other. It extends Bohr’s principle of complementarity to a nonlocal scenario. We also propose a ghost quantum eraser in which, erasing the which-path information of one particle brings back the interference fringes of the other.

Keywords

Complementarity Wave–particle duality Entanglement 

References

  1. 1.
    Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature (London) 121, 580–591 (1928)CrossRefMATHGoogle Scholar
  2. 2.
    Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)CrossRefGoogle Scholar
  3. 3.
    Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)CrossRefGoogle Scholar
  4. 4.
    Strekalov, D.V., Sergienko, A.V., Klyshko, D.N., Shih, Y.H.: Observation of two-photon ghost interference and diffraction. Phys. Rev. Lett. 74, 3600 (1995)CrossRefGoogle Scholar
  5. 5.
    D’Angelo, M., Kim, Y.-H., Kulik, S.P., Shih, Y.: Identifying entanglement using quantum ghost interference and imaging. Phys. Rev. Lett. 92, 233601 (2004)CrossRefGoogle Scholar
  6. 6.
    Thanvanthri, S., Rubin, M.H.: Ghost interference with an optical parametric amplifier. Phys. Rev. A 70, 063811 (2004)CrossRefGoogle Scholar
  7. 7.
    Zhai, Y.-H., Chen, X.-H., Zhang, D., Wu, L.-A.: Two-photon interference with true thermal light. Phys. Rev. A 72, 043805 (2005)CrossRefGoogle Scholar
  8. 8.
    Jie, L., Jing, C.: Lensless ghost diffraction with partially coherent sources: effects of the source size, transverse coherence, detector size and defocusing length. Chin. Phys. Lett. 28, 094203 (2011)CrossRefGoogle Scholar
  9. 9.
    Kofler, J., Singh, M., Ebner, M., Keller, M., Kotyrba, M.: Einstein-Podolsky-Rosen correlations from colliding Bose-Einstein condensates A. Zeiling er. Phys. Rev. A 86, 032115 (2012)Google Scholar
  10. 10.
    Chingangbam, P., Qureshi, T.: Ghost interference and quantum erasure. Prog. Theor. Phys. 127, 383–392 (2012)CrossRefMATHGoogle Scholar
  11. 11.
    Ding, D.-S., Zhou, Z.-Y., Shi, B.-S., Zou, X.-B., Guo, G.-C.: Two-color ghost interference. AIP Adv. 2, 032177 (2012)CrossRefGoogle Scholar
  12. 12.
    Shafaq, S., Qureshi, T.: Theoretical analysis of two-color ghost interference. Eur. Phys. J. D 68, 52 (2014)CrossRefGoogle Scholar
  13. 13.
    Qureshi, T., Chingangbam, P., Shafaq, S.: Understanding ghost interference. arXiv:1406.0633 [quant-ph]
  14. 14.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefMATHGoogle Scholar
  15. 15.
    Klyshko, D.N.: A simple method of preparing pure states of an optical field, of implementing the EinsteinPodolsky Rosen experiment, and of demonstrating the complementarity principle. Sov. Phys. Usp. 31, 74 (1988)CrossRefGoogle Scholar
  16. 16.
    Walborn, S.P., Monken, C.H., Pádua, S., Souto Ribeiro, P.H.: Spatial correlations in parametric down-conversion. Phys. Rep. 495, 87–139 (2010)CrossRefGoogle Scholar
  17. 17.
    Vaccaro, J.A.: Particle-wave duality: a dichotomy between symmetry and asymmetry. Proc. R. Soc. A. 468, 1065–1084 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Qureshi, T.: Understanding Popper’s experiment. Am. J. Phys. 73, 541–544 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (2002)Google Scholar
  20. 20.
    Barbosa, G.A.: Quantum images in double-slit experiments with spontaneous down-conversion light. Phys. Rev. A 54, 4473 (1996)CrossRefGoogle Scholar
  21. 21.
    Wang, L.J., Zou, X.Y., Mandel, L.: Induced coherence without induced emission. Phys. Rev. A 44, 4614 (1991)CrossRefGoogle Scholar
  22. 22.
    Zou, X.Y., Wang, L.J., Mandel, L.: Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318 (1991)CrossRefGoogle Scholar
  23. 23.
    Ou, Z.Y., Wang, L.J., Mandel, L.: Vacuum effects on interference in two-photon down conversion. Phys. Rev. A 40, 1428 (1989)CrossRefGoogle Scholar
  24. 24.
    Hong, C.K., Mandel, L.: Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58 (1986)CrossRefGoogle Scholar
  25. 25.
    Jaynes, E.: In: Barut, A.O. (ed.) Foundations of radiation theory and quantum electrodynamics, p. 37. Plenum, New York (1980)Google Scholar
  26. 26.
    Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature (London) 351, 111 (1991)CrossRefGoogle Scholar
  27. 27.
    Walborn, S.P., Terra, M.O.: Cunha, S. Pádua, C.H. Monken.: Double-slit quantum eraser. Phys. Rev. A 65, 033818 (2002)Google Scholar
  28. 28.
    Walborn, S.P., Terra Cunha, M.O., Pádua, S., Monken, C.H.: Quantum erasure. Am. Sci. 91, 336–343 (2003)CrossRefGoogle Scholar
  29. 29.
    Kim, Y.-H., Yu, R., Kulik, S.P., Shih, Y.: Delayed ‘choice’ quantum eraser. Phys. Rev. Lett. 84, 1 (2000)CrossRefGoogle Scholar
  30. 30.
    Scarcelli, G., Zhou, Y., Shih, Y.: Random delayed-choice quantum eraser via two-photon imaging. Eur. Phys. J. D 44, 167–173 (2007)CrossRefGoogle Scholar
  31. 31.
    Peng, T., Chen, H., Shih, Y.: Delayed-choice quantum eraser with thermal light. Phys. Rev. Lett. 112, 180401 (2014)CrossRefGoogle Scholar

Copyright information

© Chapman University 2015

Authors and Affiliations

  1. 1.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations