Quantum mechanics without quanta: the nature of the wave–particle duality of light

  • Sergey A. Rashkovskiy
Regular Paper


In this paper, I argue that light is a continuous classical electromagnetic wave, while the observed so-called quantum nature of the interaction of light with matter is connected to the discrete (atomic) structure of matter and to the specific nature of the light–atom interaction. From this point of view, the Born rule for light is derived, and the double-slit experiment is analysed in detail. I show that the double-slit experiment can be explained without using the concept of a “photon”, solely on the basis of classical electrodynamics. I show that within this framework, the Heisenberg uncertainty principle for a “photon” has a simple physical meaning not related to the fundamental limitations in accuracy of the simultaneous measurement of position and momentum or time and energy.


Wave–particle duality of light Classical electrodynamics Double-slit experiment Born rule Heisenberg uncertainty principle 

Mathematics Subject Classification




Funding was provided by Tomsk State University competitiveness improvement program.


  1. 1.
    Taylor, G.I.: Interference fringes with feeble light. Proc. Camb. Philos. Soc. 15(1), 114–115 (1909)Google Scholar
  2. 2.
    Dimitrova, T.L., Weis, A.: The wave-particle duality of light: a demonstration experiment. Am. J. Phys. 76(2), 137–142 (2008)Google Scholar
  3. 3.
    Rashkovskiy, S.A.: A rational explanation of wave-particle duality of light. In: SPIE Optical Engineering \(+\) Applications, pp. 88321O–88321O. International Society for Optics and Photonics (2013)Google Scholar
  4. 4.
    Holland, P.R.: The Quantum Theory of Motion: An Account of the De Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge university press, Cambridge (1995)Google Scholar
  5. 5.
    Auletta, G.: Foundations and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)Google Scholar
  6. 6.
    Bacciagaluppi, G.: The Modal Interpretation of Quantum Mechanics. Cambridge University Press, Cambridge (2006)Google Scholar
  7. 7.
    Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (2006)Google Scholar
  8. 8.
    Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42(4), 358 (1970)Google Scholar
  9. 9.
    Cramer, J.G.: The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58(3), 647 (1986)Google Scholar
  10. 10.
    Omnès, R.: Consistent interpretations of quantum mechanics. Rev. Mod. Phys. 64(2), 339 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267 (2005)Google Scholar
  12. 12.
    Tegmark, M.: The interpretation of quantum mechanics: many worlds or many words? Fortschr. der Phys. 46, 855–862 (1998)Google Scholar
  13. 13.
    Einstein, A.: Zum gegenwärtigen Stande des Strahlungsproblems. Phys. Z. 10, 185–193 (1909)zbMATHGoogle Scholar
  14. 14.
    Einstein, A.: Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Phys. Z. 10, 817–825 (1909)zbMATHGoogle Scholar
  15. 15.
    Pais, A.: Inward Bound: Of Matter and Forces in the Physical World. Oxford University Press, Oxford (1986). (Specifically, Born mentioned about Einstein’s never-published attempts to develop a “ghost-field” theory, in which point-like photons are guided probabilistically by ghost fields that follow Maxwell’s equations)Google Scholar
  16. 16.
    Messiah, A.: Quantum Mechanics. Dover Publications Inc., New York (1999)zbMATHGoogle Scholar
  17. 17.
    Bohr, N., Kramers, H.A., Slater, J.C.: LXXVI. The quantum theory of radiation. Lond. Edinb. Dublin Philos. Mag. J. Sci. 47(281), 785–802 (1924)Google Scholar
  18. 18.
    Lamb Jr, W.E.: Anti-photon. Appl. Phys. B 60, 77–84 (1995)CrossRefGoogle Scholar
  19. 19.
    Lamb, W.E.: The Interpretation of Quantum Mechanics. Rinton Press, Inc., Princeton (2001). (Edited and annotated by Mehra, Ja.)Google Scholar
  20. 20.
    Lande, A.: New Foundations of Quantum Mechanics. Cambridge Univ. Press, Cambridge (1965)Google Scholar
  21. 21.
    Muthukrishnan, A., Scully, M.O., Zubairy, M.S.: The concept of the photon-revisited. OPN Trends Suppl. Opt. Photonics News 14(10), 18–27 (2003)Google Scholar
  22. 22.
    Lamb, W.E., Scully, M.O.: The photoelectric effect without photons. In: Polarization, Matter and Radiation. Jubilee Volume in Honour of Alfred Kasiler, pp. 363–369. Press of University de France, Paris (1969)Google Scholar
  23. 23.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Dirac, P.A.M.: Relativity quantum mechanics with an application to Compton scattering. Proc. R. Soc. Lond. A 111, 405-423 (1926)Google Scholar
  25. 25.
    Dirac, P.A.M.: The Compton effect in wave mechanics. Proc. Camb. Philos. Soc. 23, 500–507 (1926)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gordon, W.: Der Comptoneffekt nach der Schrödingerschen Theorie. Zeit. f. Phys. 40, 117–133 (1926)CrossRefzbMATHGoogle Scholar
  27. 27.
    Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52(11–12), 853–869 (1929)Google Scholar
  28. 28.
    Klein, O., Nishina, Y.: On the scattering of radiation by free electrons according to Dirac’s new relativistic quantum dynamics. In: The Oskar Klein Memorial Lectures: 1988–1999, vol. 1, pp. 253-272 (2014)Google Scholar
  29. 29.
    Barut, A.O., Van Huele, J.F.: Quantum electrodynamics based on self-energy: lamb shift and spontaneous emission without field quantization. Phys. Rev. A 32(6), 3187–3195 (1985)CrossRefGoogle Scholar
  30. 30.
    Stroud, C.R. Jr., Jaynes, E.T.: Long-term solutions in semiclassical radiation theory. Phys. Rev. A 1(1), 106-121 (1970)Google Scholar
  31. 31.
    Crisp, M.D., Jaynes, E.T.: Radiative effects in semiclassical theory. Phys. Rev. 179(5), 1253–1261 (1969)CrossRefGoogle Scholar
  32. 32.
    Barut, A.O., Dowling, J.P.: Self-field quantum electrodynamics: the two-level atom. Phys. Rev. A 41(5), 2284–2294 (1990)CrossRefGoogle Scholar
  33. 33.
    Nesbet, R.K.: Spontaneous emission in semiclassical radiation theory. Phys. Rev. A 4(1), 259–264 (1971)CrossRefGoogle Scholar
  34. 34.
    Hanbury Brown, R., Twiss, R.Q.: Correlation between photons in two coherent beams of light. Nature (London) 177, 27–29 (1956)Google Scholar
  35. 35.
    Brown, R.H., Twiss, R.Q.: A test of a new type of stellar interferometer on Sirius. Nature (London) 178, 1046–1048 (1956)Google Scholar
  36. 36.
    Kracklauer, A.F.: What do correlations tell us about photons? In.: Roychoudhuri C., Kracklauer A.F., Creath K. (eds.) The Nature of Light: What Are Photons? Art-Number 66640H, Proc. SPIE 6664 (2007)Google Scholar
  37. 37.
    Kracklauer, A.F., Rangacharyulu, C., Roychoudhuri, C., Brooks, H.J., Carroll, J., Khrennikov, A.: Is indivisible single photon really essential for quantum communications, computing and encryption? In.: Roychoudhuri, C., Kracklauer, A.F., Khrennikov, A.Y. (eds.) The Nature of Light: What are Photons? III, Art.-Number 74210Y, Proc. SPIE 7421 (2009)Google Scholar
  38. 38.
    Roychoudhuri, C., Kracklauer, A.F., Creath, K. (eds.): The Nature of Light: What Are Photons? Proc. SPIE 6664 (2007)Google Scholar
  39. 39.
    Roychoudhuri, C., Kracklauer, A.F., Khrennikov, A.Y. (eds.): The Nature of Light: What are Photons? III, Proc. SPIE 7421 (2009)Google Scholar
  40. 40.
    Khrennikov, A.: Nonlinear Schrödinger equations from prequantum classical statistical field theory. Phys. Lett. A 357, 171–176 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Khrennikov, A.: Quantum probabilities and violation of CHSH-inequality from classical random signals and threshold type detection scheme. Prog. Theor. Phys. 128(1), 31–58 (2012)CrossRefzbMATHGoogle Scholar
  42. 42.
    Purcell, E.M.: The question of correlation between photons in coherent light rays. Nature (London) 178, 1449–1450 (1956)CrossRefGoogle Scholar
  43. 43.
    Mandel, L.: Fluctuations of photon beams and their correlations. Proc. Phys. Soc. 72(6), 1037 (1958)Google Scholar
  44. 44.
    Mandel, L.: V fluctuations of light beams. Prog. Opt. 2, 181–248 (1963)Google Scholar
  45. 45.
    Mandel, L.: Intensity fluctuations of partially polarized light. Proc. Phys. Soc. 81(6), 1104 (1963)Google Scholar
  46. 46.
    Mandel, L., Sudarshan, E.G., Wolf, E.: Theory of photoelectric detection of light fluctuations. Proc. Phys. Soc. 84(3), 435 (1964)Google Scholar
  47. 47.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory, vol. 3, 3rd edn. Pergamon Press, USA (1977)Google Scholar
  48. 48.
    Wiener, O.: Stehende Lichtwellen und die Schwingungsrichtung polarisirten Lichtes. Ann. Phys. Chem. 40, 203–243 (1890)CrossRefzbMATHGoogle Scholar
  49. 49.
    Drude, P., Nernst, W.: Wiedem. Ann 45, 460 (1892)Google Scholar
  50. 50.
    Ives, H.E., Fry, T.C.: J. Opt. Soc. Am. 23, 73 (1933)CrossRefGoogle Scholar
  51. 51.
    Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)Google Scholar
  52. 52.
    Schrödinger, E.: Uber den Comptoneffekt. Ann. Phys. 82, 257–264 (1927)CrossRefzbMATHGoogle Scholar
  53. 53.
    Sommerfeld, A.: Wave-Mechanics: Supplementary Volume to Atomic Structure and Spectral Lines. Dutton, New York (1934)Google Scholar
  54. 54.
    Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, vol. 4, 2nd edn. Butterworth-Heinemann, London (1982)Google Scholar
  55. 55.
    Keldysh, L.V.: Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  56. 56.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, vol. 2, 4th edn. Butterworth-Heinemann, London (1975)Google Scholar

Copyright information

© Chapman University 2015

Authors and Affiliations

  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations