Advertisement

Advances in Infection Control for Clostridioides (Formerly Clostridium) difficile Infection

  • Carlos E. Figueroa CastroEmail author
  • L. Silvia Munoz-Price
New Technologies and Advances in Infections Prevention (A Marra, Section Editor)
Part of the following topical collections:
  1. Topical Collection on New Technologies and Advances in Infection Prevention

Abstract

Purpose of review

We reviewed seminal papers and recently published articles discussing multiple aspects of infection prevention applied to Clostridioides (formerly Clostridium) difficile infection (CDI).

Recent findings

We identified hot topics including the importance of understanding the gut microbiome in CDI and its implications from an infection prevention perspective, the increasing role of antibiotic stewardship including testing stewardship in preventing and mitigating CDI, and the increasing role of clinical decision support systems to improve early diagnosis and decrease inappropriate testing.

Summary

In addition to established infection prevention interventions, CDI control will be achieved by a combination of gut microbiome manipulation, personalized medicine based on host and agent genome analysis, and a combination of antimicrobials and testing stewardship by leveraging progressively sophisticated electronic decision systems. Automated environmental decontamination systems are not routinely recommended at this time.

Keywords

Clostridium difficile Clostridioides difficile Infection prevention Antimicrobial stewardship Microbiome Clinical decision support system 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Munoz-Price had received grant funds from Cepheid.

Dr. Figueroa Castro declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prevot 1938. Anaerobe. 2016;40:95–9.CrossRefGoogle Scholar
  2. 2.
    Bartlett JG. Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med. 2006;145(10):758–64.CrossRefGoogle Scholar
  3. 3.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208.  https://doi.org/10.1056/NEJMoa1306801.CrossRefGoogle Scholar
  4. 4.
    Dubberke ER, Olsen MA. Burden of Clostridium difficile on the healthcare system. Clin Infect Dis. 2012;55(Suppl 2):S88–92.CrossRefGoogle Scholar
  5. 5.
    Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353(23):2442–9.CrossRefGoogle Scholar
  6. 6.
    McDonald LC, Killgore GE, Thompson A, Owens RCJ, Kazakova SV, Sambol SP, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353(23):2433–41.CrossRefGoogle Scholar
  7. 7.
    Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366(9491):1079–84.CrossRefGoogle Scholar
  8. 8.
    CDC. 2015 Annual report for the emerging infections program for Clostridium difficile infection [Internet]. 2017. Available from: https://www.cdc.gov/hai/eip/Annual-CDI-Report-2015.html. Accessed 20 Dec 2018.
  9. 9.
    Reveles KR, Lee GC, Boyd NK, Frei CR. The rise in Clostridium difficile infection incidence among hospitalized adults in the United States: 2001–2010. Am J Infect Control. 2014;42(10):1028–32.CrossRefGoogle Scholar
  10. 10.
    Kwon JH, Olsen MA, Dubberke ER. The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin N Am. 2015;29(1):123–34.CrossRefGoogle Scholar
  11. 11.
    McGlone SM, Bailey RR, Zimmer SM, Popovich MJ, Tian Y, Ufberg P, et al. The economic burden of Clostridium difficile. Clin Microbiol Infect. 2012;18(3):282–9.CrossRefGoogle Scholar
  12. 12.
    Gabriel L, Beriot-Mathiot A. Hospitalization stay and costs attributable to Clostridium difficile infection: a critical review. J Hosp Infect. 2014;88(1):12–21.CrossRefGoogle Scholar
  13. 13.
    Zilberberg MD, Shorr AF, Kollef MH. Increase in adult Clostridium difficile-related hospitalizations and case-fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14(6):929–31.CrossRefGoogle Scholar
  14. 14.
    Scardina T, Labuszewski L, Pacheco SM, Adams W, Schreckenberger P, Johnson S. Clostridium difficile infection (CDI) severity and outcome among patients infected with the NAP1/BI/027 strain in a non-epidemic setting. Infect Control Hosp Epidemiol. 2015;36(3):280–6.CrossRefGoogle Scholar
  15. 15.
    Bauer KA, Johnston JEW, Wenzler E, Goff DA, Cook CH, Balada-Llasat J-M, et al. Impact of the NAP-1 strain on disease severity, mortality, and recurrence of healthcare-associated Clostridium difficile infection. Anaerobe. 2017;48:1–6.CrossRefGoogle Scholar
  16. 16.
    Guh AY, Kutty PK. Clostridioides difficile infection. Ann Intern Med. 2018;169(7):ITC49–64.  https://doi.org/10.7326/AITC201810020.CrossRefGoogle Scholar
  17. 17.
    Wistrom J, Norrby SR, Myhre EB, Eriksson S, Granstrom G, Lagergren L, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother. 2001;47(1):43–50.CrossRefGoogle Scholar
  18. 18.
    Trifan A, Stanciu C, Girleanu I, Stoica OC, Singeap AM, Maxim R, et al. Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J Gastroenterol. 2017;23(35):6500–15.CrossRefGoogle Scholar
  19. 19.
    Tariq R, Singh S, Gupta A, Pardi DS, Khanna S. Association of gastric acid suppression with recurrent Clostridium difficile infection: a systematic review and meta-analysis. JAMA Intern Med. 2017;177(6):784–91.CrossRefGoogle Scholar
  20. 20.
    Azab M, Doo L, Doo DH, Elmofti Y, Ahmed M, Cadavona JJ, et al. Comparison of the hospital-acquired Clostridium difficile infection risk of using proton pump inhibitors versus histamine-2 receptor antagonists for prophylaxis and treatment of stress ulcers: a systematic review and meta-analysis. Gut Liver. 2017;11(6):781–8.CrossRefGoogle Scholar
  21. 21.
    Peretz A, Shlomo IB, Nitzan O, Bonavina L, Schaffer PM, Schaffer M. Clostridium difficile infection: associations with chemotherapy, radiation therapy, and targeting therapy treatments. Curr Med Chem. 2016;23(39):4442–9.CrossRefGoogle Scholar
  22. 22.
    Ghose C. Clostridium difficile infection in the twenty-first century. Emerg Microbes Infect. 2013;2:e62.  https://doi.org/10.1038/emi.2013.62.
  23. 23.
    Ofori E, Ramai D, Dhawan M, Mustafa F, Gasperino J, Reddy M. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect. 2018;99(4):436–42.CrossRefGoogle Scholar
  24. 24.
    •• Dubberke ER, Carling P, Carrico R, Donskey CJ, Loo VG, McDonald LC, et al. Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):628–45. This is a compendium of strategies published along other important health care-associated infections in the USA.CrossRefGoogle Scholar
  25. 25.
    •• McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile Infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):987–94. The most recent consensus from the professional societies in infectious diseases and infection prevention about the management of CDI. There is a section dedicated to infection prevention that could be a starting point for implementing a local program for CDI control.CrossRefGoogle Scholar
  26. 26.
    Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013;108(4):478–98 quiz 499.Google Scholar
  27. 27.
    Tschudin-Sutter S, Kuijper EJ, Durovic A, Vehreschild MJGT, Barbut F, Eckert C, et al. Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin Microbiol Infect. 2018;24(10):1051–4.CrossRefGoogle Scholar
  28. 28.
    Muto CA, Blank MK, Marsh JW, Vergis EN, O’Leary MM, Shutt KA, et al. Control of an outbreak of infection with the hypervirulent Clostridium difficile BI strain in a university hospital using a comprehensive “bundle” approach. Clin Infect Dis. 2007;45(10):1266–73.CrossRefGoogle Scholar
  29. 29.
    Louh IK, Greendyke WG, Hermann EA, Davidson KW, Falzon L, Vawdrey DK, et al. Clostridium difficile infection in acute care hospitals: systematic review and best practices for prevention. Infect Control Hosp Epidemiol. 2017;38(4):476–82.CrossRefGoogle Scholar
  30. 30.
    Barker AK, Ngam C, Musuuza JS, Vaughn VM, Safdar N. Reducing Clostridium difficile in the inpatient setting: a systematic review of the adherence to and effectiveness of C. difficile prevention bundles. Infect Control Hosp Epidemiol. 2017;38(6):639–50.CrossRefGoogle Scholar
  31. 31.
    Rosa R, Donskey CJ, Munoz-Price LS. The intersection between colonization resistance, antimicrobial stewardship, and Clostridium difficile. Curr Infect Dis Rep. 2018;20(8):27.CrossRefGoogle Scholar
  32. 32.
    Revolinski SL, Munoz-Price LS. Clostridium difficile exposures, colonization, and the microbiome: implications for prevention. Infect Control Hosp Epidemiol. 2018;39(5):596–602.CrossRefGoogle Scholar
  33. 33.
    Kumar N, Miyajima F, He M, Roberts P, Swale A, Ellison L, et al. Genome-based infection tracking reveals dynamics of Clostridium difficile transmission and disease recurrence. Clin Infect Dis. 2016;62(6):746–52.CrossRefGoogle Scholar
  34. 34.
    Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A, O’Connor L, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369(13):1195–205.CrossRefGoogle Scholar
  35. 35.
    Morgan DJ, Croft LD, Deloney V, Popovich KJ, Crnich C, Srinivasan A, et al. Choosing wisely in healthcare epidemiology and antimicrobial stewardship. Infect Control Hosp Epidemiol. 2016;37(7):755–60.CrossRefGoogle Scholar
  36. 36.
    Fishman N, Patterson J, Saiman L, Srinivasan A, Trivedi KK, van Schooneveld T, et al. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol. 2012;33(4):322–7.CrossRefGoogle Scholar
  37. 37.
    Revolinski S, Tran C, Huang A, Wainaina N, Munoz-Price LS. 239. Implementation of a vertical antimicrobial stewardship intervention for patients colonized with Clostridium difficile. Open Forum Infect Dis. 2018;5:S102.Google Scholar
  38. 38.
    Deshpande A, Pant C, Pasupuleti V, Rolston DDK, Jain A, Deshpande N, et al. Association between proton pump inhibitor therapy and Clostridium difficile infection in a meta-analysis. Clin Gastroenterol Hepatol. 2012;10(3):225–33.CrossRefGoogle Scholar
  39. 39.
    Janarthanan S, Ditah I, Adler DG, Ehrinpreis MN. Clostridium difficile-associated diarrhea and proton pump inhibitor therapy: a meta-analysis. Am J Gastroenterol. 2012;107(7):1001–10.CrossRefGoogle Scholar
  40. 40.
    Lewis PO, Litchfield JM, Tharp JL, Garcia RM, Pourmorteza M, Reddy CM. Risk and severity of hospital-acquired Clostridium difficile infection in patients taking proton pump inhibitors. Pharmacotherapy. 2016;36(9):986–93.CrossRefGoogle Scholar
  41. 41.
    Barletta JF, Sclar DA. Proton pump inhibitors increase the risk for hospital-acquired Clostridium difficile infection in critically ill patients. Crit Care. 2014;18(6):714.CrossRefGoogle Scholar
  42. 42.
    Hung Y-P, Ko W-C, Chou P-H, Chen Y-H, Lin H-J, Liu Y-H, et al. Proton-pump inhibitor exposure aggravates Clostridium difficile-associated colitis: evidence from a mouse model. J Infect Dis. 2015;212(4):654–63.CrossRefGoogle Scholar
  43. 43.
    Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65(5):740–8.CrossRefGoogle Scholar
  44. 44.
    Wombwell E, Chittum ME, Leeser KR. Inpatient proton pump inhibitor administration and hospital-acquired Clostridium difficile infection: evidence and possible mechanism. Am J Med. 2018;131(3):244–9.CrossRefGoogle Scholar
  45. 45.
    Sperling K, Priddy A, Suntharam N, Feuerhake T. Optimizing testing for Clostridium difficile infection: a quality improvement project. Am J Infect Control. 2018.  https://doi.org/10.1016/j.ajic.2018.08.027.
  46. 46.
    Carter KA, Malani AN. Laxative use and testing for Clostridium difficile in hospitalized adults: an opportunity to improve diagnostic stewardship. Am J Infect Control. 2018.  https://doi.org/10.1016/j.ajic.2018.08.008.
  47. 47.
    Bilinskaya A, Goodlet KJ, Nailor MD. Evaluation of a best practice alert to reduce unnecessary Clostridium difficile testing following receipt of a laxative. Diagn Microbiol Infect Dis. 2018;92(1):50–5.CrossRefGoogle Scholar
  48. 48.
    Gilligan PH. Optimizing the laboratory diagnosis of Clostridium difficile infection. Clin Lab Med. 2015;35(2):299–312.CrossRefGoogle Scholar
  49. 49.
    Marra AR, Edmond MB, Ford BA, Herwaldt LA, Algwizani AR, Diekema DJ. Failure of risk-adjustment by test method for C. difficile laboratory-identified event reporting. Infect Control Hosp Epidemiol. 2017;38(1):109–11.CrossRefGoogle Scholar
  50. 50.
    Figueroa Castro CE, Palen L, Johnson C, Graham MB, Letzer D, Ledeboer N, et al. Immediate impact of healthcare-facility-onset Clostridium difficile laboratory-identified events reporting methodology change on standardized infection ratios. Infect Control Hosp Epidemiol. 2018;39(12):1484–6.CrossRefGoogle Scholar
  51. 51.
    Press A, Ku B, McCullagh L, Rosen L, Richardson S, McGinn T. Developing a clinical prediction rule for first hospital-onset Clostridium difficile infections: a retrospective observational study. Infect Control Hosp Epidemiol. 2016;37(8):896–900.CrossRefGoogle Scholar
  52. 52.
    Tabak YP, Johannes RS, Sun X, Nunez CM, McDonald LC. Predicting the risk for hospital-onset Clostridium difficile infection (HO-CDI) at the time of inpatient admission: HO-CDI risk score. Infect Control Hosp Epidemiol. 2015;36(6):695–701.CrossRefGoogle Scholar
  53. 53.
    Wiens J, Campbell WN, Franklin ES, Guttag JV, Horvitz E. Learning data-driven patient risk stratification models for Clostridium difficile. Open Forum Infect Dis. 2014;1(2):ofu045.CrossRefGoogle Scholar
  54. 54.
    Cobo J, Merino E, Martinez C, Cozar-Llisto A, Shaw E, Marrodan T, et al. Prediction of recurrent clostridium difficile infection at the bedside: the GEIH-CDI score. Int J Antimicrob Agents. 2018;51(3):393–8.CrossRefGoogle Scholar
  55. 55.
    Hebert C, Du H, Peterson LR, Robicsek A. Electronic health record-based detection of risk factors for Clostridium difficile infection relapse. Infect Control Hosp Epidemiol. 2013;34(4):407–14.CrossRefGoogle Scholar
  56. 56.
    Escobar GJ, Baker JM, Kipnis P, Greene JD, Mast TC, Gupta SB, et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol. 2017;38(10):1196–203.CrossRefGoogle Scholar
  57. 57.
    Harris AD, Sbarra AN, Leekha S, Jackson SS, Johnson JK, Pineles L, et al. Electronically available comorbid conditions for risk prediction of healthcare-associated Clostridium difficile infection. Infect Control Hosp Epidemiol. 2018;39(3):297–301.CrossRefGoogle Scholar
  58. 58.
    Khoury JA, Sistrunk WW, Hixson F, Duncan M, Perry A, Varble A, et al. Sustained reduction in rates of hospital-onset Clostridium difficile infection using an automated electronic health record protocol. Am J Infect Control. 2018;46(5):542–8.CrossRefGoogle Scholar
  59. 59.
    Madden GR, German Mesner I, Cox HL, Mathers AJ, Lyman JA, Sifri CD, et al. Reduced Clostridium difficile tests and laboratory-identified events with a computerized clinical decision support tool and financial incentive. Infect Control Hosp Epidemiol. 2018;39(6):737–40.CrossRefGoogle Scholar
  60. 60.
    White DR, Hamilton KW, Pegues DA, Hanish A, Umscheid CA. The impact of a computerized clinical decision support tool on inappropriate Clostridium difficile testing. Infect Control Hosp Epidemiol. 2017;38(10):1204–8.CrossRefGoogle Scholar
  61. 61.
    Dewart CM, Blanco N, Foxman B, Malani AN. Electronic Clostridium difficile infection bundle reduces time to initiation of contact precautions. Infect Control Hosp Epidemiol. 2017;38(2):242–4.CrossRefGoogle Scholar
  62. 62.
    Blanco N, O’Hara LM, Robinson GL, Brown J, Heil E, Brown CH, et al. Health care worker perceptions toward computerized clinical decision support tools for Clostridium difficile infection reduction: a qualitative study at 2 hospitals. Am J Infect Control. 2018;46(10):1160–6.CrossRefGoogle Scholar
  63. 63.
    Weber DJ, Anderson DJ, Sexton DJ, Rutala WA. Role of the environment in the transmission of Clostridium difficile in health care facilities. Am J Infect Control. 2013;41(5 Suppl):S105–10.CrossRefGoogle Scholar
  64. 64.
    Weber DJ, Kanamori H, Rutala WA. “No touch” technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems. Curr Opin Infect Dis. 2016;29(4):424–31.CrossRefGoogle Scholar
  65. 65.
    Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007;65(Suppl 2):50–4.CrossRefGoogle Scholar
  66. 66.
    Pokrywka M, Buraczewski M, Frank D, Dixon H, Ferrelli J, Shutt K, et al. Can improving patient hand hygiene impact Clostridium difficile infection events at an academic medical center? Am J Infect Control. 2017;45(9):959–63.CrossRefGoogle Scholar
  67. 67.
    Sickbert-Bennett EE, DiBiase LM, Willis TMS, Wolak ES, Weber DJ, Rutala WA. Reduction of healthcare-associated infections by exceeding high compliance with hand hygiene practices. Emerg Infect Dis. 2016;22(9):1628–30.CrossRefGoogle Scholar
  68. 68.
    Oughton MT, Loo VG, Dendukuri N, Fenn S, Libman MD. Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile. Infect Control Hosp Epidemiol. 2009;30(10):939–44.CrossRefGoogle Scholar
  69. 69.
    Barker AK, Zellmer C, Tischendorf J, Duster M, Valentine S, Wright MO, et al. On the hands of patients with Clostridium difficile: a study of spore prevalence and the effect of hand hygiene on C difficile removal. Am J Infect Control. 2017;45(10):1154–6.CrossRefGoogle Scholar
  70. 70.
    Deschenes P, Chano F, Dionne L-L, Pittet D, Longtin Y. Efficacy of the World Health Organization-recommended handwashing technique and a modified washing technique to remove Clostridium difficile from hands. Am J Infect Control. 2017;45(8):844–8.CrossRefGoogle Scholar
  71. 71.
    Edmonds SL, Zapka C, Kasper D, Gerber R, McCormack R, Macinga D, et al. Effectiveness of hand hygiene for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol. 2013;34(3):302–5.CrossRefGoogle Scholar
  72. 72.
    Ragusa R, Giorgianni G, Lupo L, Sciacca A, Rametta S, La Verde M, et al. Healthcare-associated Clostridium difficile infection: role of correct hand hygiene in cross-infection control. J Prev Med Hyg. 2018;59(2):E145–52.Google Scholar
  73. 73.
    Nelson RE, Jones M, Leecaster M, Samore MH, Ray W, Huttner A, et al. An Economic Analysis of Strategies to Control Clostridium Difficile Transmission and Infection Using an Agent-Based Simulation Model. PLoS One. 2016;11(3):e0152248.CrossRefGoogle Scholar
  74. 74.
    Falagas ME, Thomaidis PC, Kotsantis IK, Sgouros K, Samonis G, Karageorgopoulos DE. Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J Hosp Infect. 2011;78(3):171–7.CrossRefGoogle Scholar
  75. 75.
    Barbut F, Yezli S, Otter JA. Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores. J Hosp Infect. 2012;80(1):85–7.CrossRefGoogle Scholar
  76. 76.
    Barbut F. How to eradicate Clostridium difficile from the environment. J Hosp Infect. 2015;89(4):287–95.CrossRefGoogle Scholar
  77. 77.
    McCord J, Prewitt M, Dyakova E, Mookerjee S, Otter JA. Reduction in Clostridium difficile infection associated with the introduction of hydrogen peroxide vapour automated room disinfection. J Hosp Infect. 2016;94(2):185–7.CrossRefGoogle Scholar
  78. 78.
    Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. Infect Control Hosp Epidemiol. 2010;31(10):1025–9.CrossRefGoogle Scholar
  79. 79.
    Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010;10:197.CrossRefGoogle Scholar
  80. 80.
    Boyce JM, Havill NL, Moore BA. Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol. 2011;32(8):737–42.CrossRefGoogle Scholar
  81. 81.
    Anderson DJ, Gergen MF, Smathers E, Sexton DJ, Chen LF, Weber DJ, et al. Decontamination of targeted pathogens from patient rooms using an automated ultraviolet-C-emitting device. Infect Control Hosp Epidemiol. 2013;34(5):466–71.CrossRefGoogle Scholar
  82. 82.
    Rutala WA, Gergen MF, Tande BM, Weber DJ. Room decontamination using an ultraviolet-C device with short ultraviolet exposure time. Infect Control Hosp Epidemiol. 2014;35:1070–2.Google Scholar
  83. 83.
    Havill NL, Moore BA, Boyce JM. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. Infect Control Hosp Epidemiol. 2012;33(5):507–12.CrossRefGoogle Scholar
  84. 84.
    Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41(8):746–8.CrossRefGoogle Scholar
  85. 85.
    Nerandzic MM, Fisher CW, Donskey CJ. Sorting through the wealth of options: comparative evaluation of two ultraviolet disinfection systems. PLoS One. 2014;9(9):e107444.CrossRefGoogle Scholar
  86. 86.
    Ghantoji SS, Stibich M, Stachowiak J, Cantu S, Adachi JA, Raad II, et al. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms. J Med Microbiol. 2015;64(Pt 2):191–4.CrossRefGoogle Scholar
  87. 87.
    Green C, Pamplin JC, Chafin KN, Murray CK, Yun HC. Pulsed-xenon ultraviolet light disinfection in a burn unit: Impact on environmental bioburden, multidrug-resistant organism acquisition and healthcare associated infections. Burns. 2017;43(2):388–96.CrossRefGoogle Scholar
  88. 88.
    Miller R, Simmons S, Dale C, Stachowiak J, Stibich M. Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility. Am J Infect Control. 2015;43(12):1350–3.CrossRefGoogle Scholar
  89. 89.
    Anderson DJ, Chen LF, Weber DJ, Moehring RW, Lewis SS, Triplett PF, et al. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet. 2017;389(10071):805–14.CrossRefGoogle Scholar
  90. 90.
    Anderson DJ, Moehring RW, Weber DJ, Lewis SS, Chen LF, Schwab JC, et al. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover. Lancet Infect Dis. 2018;18(8):845–53.CrossRefGoogle Scholar
  91. 91.
    Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.CrossRefGoogle Scholar
  92. 92.
    Marra AR, Schweizer ML, Edmond MB. No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2018;39(1):20–31.CrossRefGoogle Scholar
  93. 93.
    Weaver L, Michels HT, Keevil CW. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect. 2008;68(2):145–51.CrossRefGoogle Scholar
  94. 94.
    Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother. 2008;62(3):522–5.CrossRefGoogle Scholar
  95. 95.
    O’Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? J Hosp Infect. 2012;81(4):217–23.CrossRefGoogle Scholar
  96. 96.
    Butler JP. Effect of copper-impregnated composite bed linens and patient gowns on healthcare-associated infection ratesin six hospitals. J Hosp Infect. 2018;100(3):e130–e134.  https://doi.org/10.1016/j.jhin.2018.05.013.
  97. 97.
    Madden GR, Heon BE, Sifri CD. Effect of copper-impregnated linens on multidrug-resistant organism acquisition and Clostridium difficile infection at a long-term acute-care hospital. Infect Control Hosp Epidemiol. 2018;39(11):1384–6.CrossRefGoogle Scholar
  98. 98.
    McDonald LC, Diekema DJ. Point-counterpoint: active surveillance for carriers of toxigenic Clostridium difficile should be performed to guide prevention efforts. J Clin Microbiol. 2018;56(8).Google Scholar
  99. 99.
    Kong LY, Eyre DW, Corbeil J, Raymond F, Walker AS, Wilcox MH, et al. Clostridium difficile: investigating transmission patterns between infected and colonized patients using whole genome sequencing. Clin Infect Dis. 2019;68(2):204–209.  https://doi.org/10.1093/cid/ciy457.
  100. 100.
    Longtin Y, Paquet-Bolduc B, Gilca R, Garenc C, Fortin E, Longtin J, et al. Effect of detecting and isolating Clostridium difficile carriers at hospital admission on the incidence of C. difficile infections: a quasi-experimental controlled study. JAMA Intern Med. 2016;176(6):796–804.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carlos E. Figueroa Castro
    • 1
    Email author
  • L. Silvia Munoz-Price
    • 1
  1. 1.Department of Medicine, Division of Infectious DiseasesMedical College of WisconsinMilwaukeeUSA

Personalised recommendations