Advertisement

Measuring gender segregation

Sensitivity to movements and to an increase in one category
  • Diego C. BotassioEmail author
  • Rodolfo Hoffmann
Research Article
  • 73 Downloads

Abstract

This paper aims to fill some gaps in the literature concerning the sensitivity of segregation measures. We examine the definitions of regressive and progressive movement, and formally describe the requirements for these movements. As a result of this analysis, we relax a strong assumption established in the literature regarding these movements. Since these measures increase with regressive movement, we are interested in analyzing how the measures’ sensitivities vary as a function of the position of the strata. This analysis allows us to establish how the segregation measures behave with an increase in the number of people in one category in a stratum. We analyze these concepts in terms of the Gini index and the class of additively decomposable measures and analyze the sensitivity of the index of dissimilarity to regressive movements. Data from a national household survey are used to illustrate the results found in the paper.

Keywords

Segregation Segregation measurement Sensitivity Pigou–Dalton principle Gender segregation 

JEL Classification

D63 J01 J16 J21 

Notes

Acknowledgements

We are grateful to an anonymous referee for making excellent suggestions during the review process. We also acknowledge financial support from the Brazilian National Council for Technological and Scientific Development (CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico).

References

  1. Atkinson, A.B.: On the measurement of inequality. J. Econ. Theory 2(3), 244–263 (1970).  https://doi.org/10.1016/0022-0531(70)90039-6 CrossRefGoogle Scholar
  2. Chakravarty, S.R., Silber, J.: A generalized index of employment segregation. Math. Soc. Sci. 53(2), 185–195 (2007).  https://doi.org/10.1016/j.mathsocsci.2006.11.003 CrossRefGoogle Scholar
  3. Cortese, C., Falk, R., Cohen, J.: Further considerations on the methodological analysis of segregation indices. Am. Sociol. Rev. 41(4), 630–637 (1976).  https://doi.org/10.2307/2094840 CrossRefGoogle Scholar
  4. Cowell, F., Kuga, K.: Additivity and the entropy concept: an axiomatic approach to inequality measurement. J. Econ. Theory 25(1), 131–143 (1981).  https://doi.org/10.1016/0022-0531(81)90020-X CrossRefGoogle Scholar
  5. Dalton, H.: The measurement of the inequality of incomes. Econ. J. 30(119), 348–361 (1920).  https://doi.org/10.2307/2223525 CrossRefGoogle Scholar
  6. Duncan, O., Duncan, B.: A methodological analysis of segregation indexes. Am. Sociol. Rev. 20(2), 210–217 (1955).  https://doi.org/10.2307/2088328 CrossRefGoogle Scholar
  7. Hoffmann, R.: Sensibilidade das medidas de desigualdade a transferências regressivas. Pesquisa e Planejamento Econonômico 22(2), 289–304 (1992)Google Scholar
  8. Hoffmann, R.: Effect of the rise of a person’s income on inequality. Braz. Rev. Econ. 21(2), 237–262 (2001).  https://doi.org/10.12660/bre.v21n22001.2751 Google Scholar
  9. Hutchens, R.: Segregation curves, Lorenz curves, and inequality in the distribution of people across occupations. Math. Soc. Sci. 21(1), 31–51 (1991).  https://doi.org/10.1016/0165-4896(91)90038-S CrossRefGoogle Scholar
  10. Hutchens, R.: Numerical measures of segregation: desirable properties and their implications. Math. Soc. Sci. 42(1), 13–29 (2001).  https://doi.org/10.1016/S0165-4896(00)00070-6 CrossRefGoogle Scholar
  11. Hutchens, R.: One measure of segregation. Int. Econ. Rev. 45(2), 555–578 (2004).  https://doi.org/10.1111/j.1468-2354.2004.00136.x CrossRefGoogle Scholar
  12. Jahn, J., Schmid, C., Schrag, C.: The measurement of ecological segregation. Am. Sociol. Rev. 12(3), 293–303 (1947).  https://doi.org/10.2307/2086519 CrossRefGoogle Scholar
  13. James, D., Taeuber, K.: Measures of segregation. Sociol. Methodol. 15, 1–32 (1985).  https://doi.org/10.2307/270845 CrossRefGoogle Scholar
  14. Kakwani, N.C.: Income inequality and poverty: methods of estimation and policy applications. Oxford University Press, Washington D.C (1980)Google Scholar
  15. Lambert, P., Lanza, G.: The effect on inequality of changing one or two incomes. J. Econ. Inequ. 4(3), 253–277 (2006).  https://doi.org/10.1007/s10888-006-9020-1 CrossRefGoogle Scholar
  16. Pigou, A.: Wealth and Welfare. Macmillan, London (1912)Google Scholar
  17. Roope, L.: Characterizing inequality benchmark incomes. Econ. Theory Bull. 1–15 (2018).  https://doi.org/10.1007/s40505-018-0148-5
  18. Shorrocks, A.: The class of additively decomposable inequality measures. Econometrica 48(3), 613–625 (1980).  https://doi.org/10.2307/1913126 CrossRefGoogle Scholar
  19. Shorrocks, A., Foster, J.: Transfer sensitive inequality measures. Rev. Econ. Stud. 54(3), 485–497 (1987).  https://doi.org/10.2307/2297571 CrossRefGoogle Scholar
  20. Theil, H.: Economics and Information Theory. North-Holland, Amsterdam (1967)Google Scholar

Copyright information

© Society for the Advancement of Economic Theory 2019

Authors and Affiliations

  1. 1.Department of Economics, Administration and SociologyUniversity of São PauloPiracicabaBrazil

Personalised recommendations