Economic Theory Bulletin

, Volume 4, Issue 2, pp 213–229 | Cite as

Noncooperative games, coupling constraints, and partial efficiency

Research Article
  • 91 Downloads

Abstract

Many noncooperative settings require sharing of aggregate holdings—be these of natural resources, production tasks, or pollution permits. This paper considers instances where the shared items eventually become competitively priced. For that reason, the solution concept incorporates features of Nash and Walras equilibria. Focus is on how the concerned agents, by themselves, may reach an outcome of such sort. A main mechanism is direct bilateral exchange, repeated time and again.

Keywords

Coupling constraints Normalized Nash equilibrium Partial efficiency Bilateral exchange Monotonicity Stability Convergence 

JEL Classification

C62 C72 D43 D62 

Notes

Acknowledgments

Thanks are due: for support CESifo, München and the Arne Ryde Foundation, Lund–and for hospitality the University of Alicante.

References

  1. Arrow, K.J.: Rationality of self and others in an economic system. J. Bus. 59, 385–399 (1986)CrossRefGoogle Scholar
  2. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)CrossRefGoogle Scholar
  3. Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, Berlin (1990)CrossRefGoogle Scholar
  4. Feldman, A.M.: Bilateral trading processes, pairwise optimality, and Pareto optimality. Rev. Econ. Stud. 4, 463–473 (1973)CrossRefGoogle Scholar
  5. Flåm, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math. Progr. 78, 29–41 (1997)CrossRefGoogle Scholar
  6. Flåm, S.D.: Equilibrium, evolutionary stability and gradient dynamics. Int. Game Theory Rev. 4(4), 357–370 (2002)CrossRefGoogle Scholar
  7. Flåm, S.D., Jourani, A.: Strategic behavior and partial cost sharing. Games Econ. Behav. 43, 44–56 (2003)CrossRefGoogle Scholar
  8. Flåm, S.D., Ruszczynski, A.: Computing normalized equilibria in convex-concave games. Int. Game Theory Rev. 10(1), 37–51 (2003)CrossRefGoogle Scholar
  9. Flåm, S.D., Gramstad, K.: Direct exchange in linear economies. Int. Game Theory Rev. 14, 4 (2012)CrossRefGoogle Scholar
  10. Flåm, S.D., Gramstad, K.: Reaching equilibrium in emission and resource markets, submitted (2015)Google Scholar
  11. Flåm, S.D.: Bilateral exchange and competitive equilibrium, to appear in Set- Valued and Variational Analysis (2015)Google Scholar
  12. Forgó, F., Szép, J., Szidarovski, F.: Introduction to the Theory of Games. Springer, Berlin (1999)Google Scholar
  13. Gintis, H.: The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences. Princeton University Press, Princeton, New Jersey (2009)Google Scholar
  14. Hart, S., Mas-Colell, A.: Simple Adaptive Strategies: From Regret-Matching to Uncoupled Dynamics. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  15. Mas-Colell, A., Whinston, M.D., Green, J.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  16. Necoara, I., Nesterov, Y., Glineur, F.: A random coordinate descent method on large-scale optimization problems with linear constraints. http://acse.pub.ro/person/ion-necoara (2015)
  17. Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic Press, New York (1990)Google Scholar
  18. Outrata, J.V., Ferris, M.C., Červinka, M., Outrata, M.: On Cournot–Nash–Walras equilibria and their computation. http://www.optimization-online.org/DB-HTML/2015/09/5128.html (2015)
  19. Peyton Young, H.: Strategic Learning and its Limits. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  20. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33(3), 520–534 (1965)CrossRefGoogle Scholar
  21. Smith, V.L.: Papers in Experimental Economics. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar
  22. Smith, V.L.: Rationality in Economics. Cambridge Univ Press, Cambridge (2008)Google Scholar
  23. Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009)CrossRefGoogle Scholar
  24. Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory Appl. 129(3), 469–488 (2006)CrossRefGoogle Scholar

Copyright information

© Society for the Advancement of Economic Theory 2016

Authors and Affiliations

  1. 1.Economics DepartmentUniversity of BergenBergenNorway

Personalised recommendations